Cargando…

Knee moments of anterior cruciate ligament reconstructed and control participants during normal and inclined walking

OBJECTIVES: Prior injury to the knee, particularly anterior cruciate ligament (ACL) injury, is known to predispose one to premature osteoarthritis (OA). The study sought to explore if there was a biomechanical rationale for this process by investigating changes in external knee moments between peopl...

Descripción completa

Detalles Bibliográficos
Autores principales: Varma, Raghav K, Duffell, Lynsey D, Nathwani, Dinesh, McGregor, Alison H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054639/
https://www.ncbi.nlm.nih.gov/pubmed/24898088
http://dx.doi.org/10.1136/bmjopen-2013-004753
Descripción
Sumario:OBJECTIVES: Prior injury to the knee, particularly anterior cruciate ligament (ACL) injury, is known to predispose one to premature osteoarthritis (OA). The study sought to explore if there was a biomechanical rationale for this process by investigating changes in external knee moments between people with a history of ACL injury and uninjured participants during walking: (1) on different surface inclines and (2) at different speeds. In addition we assessed functional differences between the groups. PARTICIPANTS: 12 participants who had undergone ACL reconstruction (ACLR) and 12 volunteers with no history of knee trauma or injury were recruited into this study. Peak knee flexion and adduction moments were assessed during flat (normal and slow speed), uphill and downhill walking using an inclined walkway with an embedded Kistler Force plate, and a ten-camera Vicon motion capture system. Knee injury and Osteoarthritis Outcome Score (KOOS) was used to assess function. Multivariate analysis of variance (MANOVA) was used to examine statistical differences in gait and KOOS outcomes. RESULTS: No significant difference was observed in the peak knee adduction moment between ACLR and control participants, however, in further analysis, MANOVA revealed that ACLR participants with an additional meniscal tear or collateral ligament damage (7 participants) had a significantly higher adduction moment (0.33±0.12 Nm/kg m) when compared with those with isolated ACLR (5 participants, 0.1±0.057 Nm/kg m) during gait at their normal speed (p<0.05). A similar (non-significant) trend was seen during slow, uphill and downhill gait. CONCLUSIONS: Participants with an isolated ACLR had a reduced adductor moment rather an increased moment, thus questioning prior theories on OA development. In contrast, those participants who had sustained associated trauma to other key knee structures were observed to have an increased adduction moment. Additional injury concurrent with an ACL rupture may lead to a higher predisposition to osteoarthritis than isolated ACL deficiency alone.