Cargando…
MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing
We have developed a novel machine-learning approach, MutPred Splice, for the identification of coding region substitutions that disrupt pre-mRNA splicing. Applying MutPred Splice to human disease-causing exonic mutations suggests that 16% of mutations causing inherited disease and 10 to 14% of somat...
Autores principales: | Mort, Matthew, Sterne-Weiler, Timothy, Li, Biao, Ball, Edward V, Cooper, David N, Radivojac, Predrag, Sanford, Jeremy R, Mooney, Sean D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054890/ https://www.ncbi.nlm.nih.gov/pubmed/24451234 http://dx.doi.org/10.1186/gb-2014-15-1-r19 |
Ejemplares similares
-
Inferring the molecular and phenotypic impact of amino acid variants with MutPred2
por: Pejaver, Vikas, et al.
Publicado: (2020) -
Exon identity crisis: disease-causing mutations that disrupt the splicing code
por: Sterne-Weiler, Timothy, et al.
Publicado: (2014) -
New mtDNA Association Model, MutPred Variant Load, Suggests Individuals With Multiple Mildly Deleterious mtDNA Variants Are More Likely to Suffer From Atherosclerosis
por: Piotrowska-Nowak, Agnieszka, et al.
Publicado: (2019) -
SPLICE-q: a Python tool for genome-wide quantification of splicing efficiency
por: de Melo Costa, Verônica R., et al.
Publicado: (2021) -
SpliceV: analysis and publication quality printing of linear and circular RNA splicing, expression and regulation
por: Ungerleider, Nathan, et al.
Publicado: (2019)