Cargando…

State Observer Design for Delayed Genetic Regulatory Networks

Genetic regulatory networks are dynamic systems which describe the interactions among gene products (mRNAs and proteins). The internal states of a genetic regulatory network consist of the concentrations of mRNA and proteins involved in it, which are very helpful in understanding its dynamic behavio...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Li-Ping, Wang, Zhi-Jun, Mohammadbagheri, Amin, Wu, Fang-Xiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054920/
https://www.ncbi.nlm.nih.gov/pubmed/24963341
http://dx.doi.org/10.1155/2014/761562
Descripción
Sumario:Genetic regulatory networks are dynamic systems which describe the interactions among gene products (mRNAs and proteins). The internal states of a genetic regulatory network consist of the concentrations of mRNA and proteins involved in it, which are very helpful in understanding its dynamic behaviors. However, because of some limitations such as experiment techniques, not all internal states of genetic regulatory network can be effectively measured. Therefore it becomes an important issue to estimate the unmeasured states via the available measurements. In this study, we design a state observer to estimate the states of genetic regulatory networks with time delays from available measurements. Furthermore, based on linear matrix inequality (LMI) approach, a criterion is established to guarantee that the dynamic of estimation error is globally asymptotically stable. A gene repressillatory network is employed to illustrate the effectiveness of our design approach.