Cargando…
EEG-based workload estimation across affective contexts
Workload estimation from electroencephalographic signals (EEG) offers a highly sensitive tool to adapt the human–computer interaction to the user state. To create systems that reliably work in the complexity of the real world, a robustness against contextual changes (e.g., mood), has to be achieved....
Autores principales: | Mühl, Christian, Jeunet, Camille, Lotte, Fabien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054975/ https://www.ncbi.nlm.nih.gov/pubmed/24971046 http://dx.doi.org/10.3389/fnins.2014.00114 |
Ejemplares similares
-
Estimating Cognitive Workload in an Interactive Virtual Reality Environment Using EEG
por: Tremmel, Christoph, et al.
Publicado: (2019) -
Editorial: Detection and Estimation of Working Memory States and Cognitive Functions Based on Neurophysiological Measures
por: Putze, Felix, et al.
Publicado: (2018) -
EEG-TNet: An End-To-End Brain Computer Interface Framework for Mental Workload Estimation
por: Fan, Chaojie, et al.
Publicado: (2022) -
Online EEG-Based Workload Adaptation of an Arithmetic Learning Environment
por: Walter, Carina, et al.
Publicado: (2017) -
Measuring Mental Workload with EEG+fNIRS
por: Aghajani, Haleh, et al.
Publicado: (2017)