Cargando…
High-Dimensional Additive Hazards Regression for Oral Squamous Cell Carcinoma Using Microarray Data: A Comparative Study
Microarray technology results in high-dimensional and low-sample size data sets. Therefore, fitting sparse models is substantial because only a small number of influential genes can reliably be identified. A number of variable selection approaches have been proposed for high-dimensional time-to-even...
Autores principales: | Hamidi, Omid, Tapak, Lily, Jafarzadeh Kohneloo, Aarefeh, Sadeghifar, Majid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055233/ https://www.ncbi.nlm.nih.gov/pubmed/24982876 http://dx.doi.org/10.1155/2014/393280 |
Ejemplares similares
-
Predicting the Survival Time for Bladder Cancer Using an Additive Hazards Model in Microarray Data
por: TAPAK, Leili, et al.
Publicado: (2016) -
Identification of Prognostic Biomarkers for Breast Cancer Metastasis
Using Penalized Additive Hazards Regression Model
por: Tapak, Leili, et al.
Publicado: (2023) -
Regularized Weighted Nonparametric Likelihood Approach for High-Dimension Sparse Subdistribution Hazards Model for Competing Risk Data
por: Tapak, Leili, et al.
Publicado: (2021) -
Frequency and Predisposing Factors for Drug-Induced Hypoglycemia in Patients with Type-2 Diabetes Mellitus: A Comment
por: Gorgzadeh, Nazanin, et al.
Publicado: (2020) -
Multistate recursively imputed survival trees for time-to-event data analysis: an application to AIDS and mortality post-HIV infection data
por: Tapak, Leili, et al.
Publicado: (2018)