Cargando…
Population genetic analysis of bi-allelic structural variants from low-coverage sequence data with an expectation-maximization algorithm
BACKGROUND: Population genetics and association studies usually rely on a set of known variable sites that are then genotyped in subsequent samples, because it is easier to genotype than to discover the variation. This is also true for structural variation detected from sequence data. However, the g...
Autores principales: | Lucas-Lledó, José Ignacio, Vicente-Salvador, David, Aguado, Cristina, Cáceres, Mario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055234/ https://www.ncbi.nlm.nih.gov/pubmed/24884587 http://dx.doi.org/10.1186/1471-2105-15-163 |
Ejemplares similares
-
miREM: an expectation-maximization approach for prioritizing miRNAs associated with gene-set
por: Abdul Hadi, Luqman Hakim, et al.
Publicado: (2018) -
Genotype calling in tetraploid species from bi-allelic marker data using mixture models
por: Voorrips, Roeland E, et al.
Publicado: (2011) -
GASH: An improved algorithm for maximizing the number of equivalent residues between two protein structures
por: Standley, Daron M, et al.
Publicado: (2005) -
LoRTE: Detecting transposon-induced genomic variants using low coverage PacBio long read sequences
por: Disdero, Eric, et al.
Publicado: (2017) -
Algorithmic improvements for discovery of germline copy number variants in next-generation sequencing data
por: O’Fallon, Brendan, et al.
Publicado: (2022)