Cargando…
Multiparametric MRI Characterization and Prediction in Autism Spectrum Disorder Using Graph Theory and Machine Learning
This study employed graph theory and machine learning analysis of multiparametric MRI data to improve characterization and prediction in autism spectrum disorders (ASD). Data from 127 children with ASD (13.5±6.0 years) and 153 age- and gender-matched typically developing children (14.5±5.7 years) we...
Autores principales: | Zhou, Yongxia, Yu, Fang, Duong, Timothy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055499/ https://www.ncbi.nlm.nih.gov/pubmed/24922325 http://dx.doi.org/10.1371/journal.pone.0090405 |
Ejemplares similares
-
Identifying and Predicting Autism Spectrum Disorder Based on Multi-Site Structural MRI With Machine Learning
por: Duan, YuMei, et al.
Publicado: (2022) -
The Importance of Anti-correlations in Graph Theory Based Classification of Autism Spectrum Disorder
por: Kazeminejad, Amirali, et al.
Publicado: (2020) -
Autism Spectrum Disorder Studies Using fMRI Data and Machine Learning: A Review
por: Liu, Meijie, et al.
Publicado: (2021) -
Machine and Deep Learning Prediction Of Prostate Cancer Aggressiveness Using Multiparametric MRI
por: Bertelli, Elena, et al.
Publicado: (2022) -
Prediction and Analysis of Autism Spectrum Disorder Using Machine Learning Techniques
por: Qureshi, Muhammad Shuaib, et al.
Publicado: (2023)