Cargando…
CGBayesNets: Conditional Gaussian Bayesian Network Learning and Inference with Mixed Discrete and Continuous Data
Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous...
Autores principales: | McGeachie, Michael J., Chang, Hsun-Hsien, Weiss, Scott T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055564/ https://www.ncbi.nlm.nih.gov/pubmed/24922310 http://dx.doi.org/10.1371/journal.pcbi.1003676 |
Ejemplares similares
-
Bayesian Inference for Mixed Gaussian GARCH-Type Model by Hamiltonian Monte Carlo Algorithm
por: Liang, Rubing, et al.
Publicado: (2022) -
Fast Bayesian inference in large Gaussian graphical models
por: Leday, Gwenaël G. R., et al.
Publicado: (2019) -
Mapping transcription mechanisms from multimodal genomic data
por: Chang, Hsun-Hsien, et al.
Publicado: (2010) -
Gaussian Process Based Bayesian Inference System for Intelligent Surface Measurement
por: Ren, Ming Jun, et al.
Publicado: (2018) -
Discrete, continuous, and hybrid petri nets
por: David, René, et al.
Publicado: (2004)