Cargando…
Intracochlear Pressure Changes due to Round Window Opening: A Model Experiment
To preserve residual hearing in cochlea implantation, the electrode design has been refined and an atraumatic insertion of the cochlea electrode has become one aspect of cochlea implant research. The opening of the round window can be assumed to be a contributing factor in an atraumatic concept. The...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055591/ https://www.ncbi.nlm.nih.gov/pubmed/24982942 http://dx.doi.org/10.1155/2014/341075 |
Sumario: | To preserve residual hearing in cochlea implantation, the electrode design has been refined and an atraumatic insertion of the cochlea electrode has become one aspect of cochlea implant research. The opening of the round window can be assumed to be a contributing factor in an atraumatic concept. The aim of our study was to observe intracochlear pressure changes due to different opening conditions of an artificial round window membrane. The experiments were performed in an artificial cochlea model. A round window was simulated with a polythene foil and a pressure sensor was placed in the helicotrema area to monitor intraluminal pressure changes. Openings of the artificial round window membrane were performed using different ways. Opening the artificial round window mechanically showed a biphasic behaviour of pressure change. Laser openings showed a unidirectional pressure change. The lowest pressure changes were observed when opening the artificial round window membrane using a diode laser. The highest pressure changes were seen when using a needle. The openings with the CO(2) laser showed a negative intracochlear pressure and a loss of fluid. In our model experiments, we could prove that the opening of the artificial round window membrane causes various intracochlear pressure changes. |
---|