Cargando…
A Reweighted ℓ(1)-Minimization Based Compressed Sensing for the Spectral Estimation of Heart Rate Variability Using the Unevenly Sampled Data
In this paper, a reweighted ℓ(1)-minimization based Compressed Sensing (CS) algorithm incorporating the Integral Pulse Frequency Modulation (IPFM) model for spectral estimation of HRV is introduced. Knowing as a novel sensing/sampling paradigm, the theory of CS asserts certain signals that are consi...
Autores principales: | Chen, Szi-Wen, Chao, Shih-Chieh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055623/ https://www.ncbi.nlm.nih.gov/pubmed/24922059 http://dx.doi.org/10.1371/journal.pone.0099098 |
Ejemplares similares
-
Spectral estimation in unevenly sampled space of periodically expressed microarray time series data
por: Liew, Alan Wee-Chung, et al.
Publicado: (2007) -
Reweighted Manifold
Learning of Collective Variables
from Enhanced Sampling Simulations
por: Rydzewski, Jakub, et al.
Publicado: (2022) -
Multiscale Reweighted Stochastic Embedding: Deep Learning
of Collective Variables for Enhanced Sampling
por: Rydzewski, Jakub, et al.
Publicado: (2021) -
HAMMER: Reweighting tool for simulated data samples
por: Duell, Stephan, et al.
Publicado: (2017) -
Estimate of the full statistical error for the reweighting technique
por: Blondel, A, et al.
Publicado: (1999)