Cargando…

cnvHiTSeq: integrative models for high-resolution copy number variation detection and genotyping using population sequencing data

Recent advances in sequencing technologies provide the means for identifying copy number variation (CNV) at an unprecedented resolution. A single next-generation sequencing experiment offers several features that can be used to detect CNV, yet current methods do not incorporate all available signatu...

Descripción completa

Detalles Bibliográficos
Autores principales: Bellos, Evangelos, Johnson, Michael R, M Coin, Lachlan J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4056371/
https://www.ncbi.nlm.nih.gov/pubmed/23259578
http://dx.doi.org/10.1186/gb-2012-13-12-r120
Descripción
Sumario:Recent advances in sequencing technologies provide the means for identifying copy number variation (CNV) at an unprecedented resolution. A single next-generation sequencing experiment offers several features that can be used to detect CNV, yet current methods do not incorporate all available signatures into a unified model. cnvHiTSeq is an integrative probabilistic method for CNV discovery and genotyping that jointly analyzes multiple features at the population level. By combining evidence from complementary sources, cnvHiTSeq achieves high genotyping accuracy and a substantial improvement in CNV detection sensitivity over existing methods, while maintaining a low false discovery rate. cnvHiTSeq is available at http://sourceforge.net/projects/cnvhitseq