Cargando…
The ADP-Ribosyltransferase Domain of the Effector Protein ExoS Inhibits Phagocytosis of Pseudomonas aeruginosa during Pneumonia
Pseudomonas aeruginosa is a Gram-negative pathogen commonly associated with nosocomial infections such as hospital-acquired pneumonia. It uses a type III secretion system to deliver effector proteins directly into the cytosol of host cells. Type III secretion in P. aeruginosa has been linked to seve...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Microbiology
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4056551/ https://www.ncbi.nlm.nih.gov/pubmed/24917597 http://dx.doi.org/10.1128/mBio.01080-14 |
_version_ | 1782320840098971648 |
---|---|
author | Rangel, Stephanie M. Logan, Latania K. Hauser, Alan R. |
author_facet | Rangel, Stephanie M. Logan, Latania K. Hauser, Alan R. |
author_sort | Rangel, Stephanie M. |
collection | PubMed |
description | Pseudomonas aeruginosa is a Gram-negative pathogen commonly associated with nosocomial infections such as hospital-acquired pneumonia. It uses a type III secretion system to deliver effector proteins directly into the cytosol of host cells. Type III secretion in P. aeruginosa has been linked to severe disease and worse clinical outcomes in animal and human studies. The majority of P. aeruginosa strains secrete ExoS, a bifunctional toxin with GTPase-activating protein and ADP-ribosyltransferase activities. Numerous in vitro studies have investigated the targets and cellular effects of ExoS, linking both its enzymatic activities with inhibition of bacterial internalization. However, little is known about how this toxin facilitates the progression of infection in vivo. In this study, we used a mouse model to investigate the role of ExoS in inhibiting phagocytosis during pneumonia. We first confirmed previous findings that the ADP-ribosyltransferase activity of ExoS, but not the GTPase-activating protein activity, was responsible for bacterial persistence and decreased host survival in this model. We then used two distinct assays to demonstrate that ExoS inhibited phagocytosis during pneumonia. In contrast to the findings of several in vitro studies, this in vivo inhibition was also dependent on the ADP-ribosyltransferase activity, but not the GTPase-activating protein activity, of ExoS. These results demonstrate for the first time the antiphagocytic function of ExoS in the context of an actual infection and indicate that blocking the ADP-ribosyltransferase activity of ExoS may have potential therapeutic benefit. |
format | Online Article Text |
id | pubmed-4056551 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Society of Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-40565512014-06-13 The ADP-Ribosyltransferase Domain of the Effector Protein ExoS Inhibits Phagocytosis of Pseudomonas aeruginosa during Pneumonia Rangel, Stephanie M. Logan, Latania K. Hauser, Alan R. mBio Research Article Pseudomonas aeruginosa is a Gram-negative pathogen commonly associated with nosocomial infections such as hospital-acquired pneumonia. It uses a type III secretion system to deliver effector proteins directly into the cytosol of host cells. Type III secretion in P. aeruginosa has been linked to severe disease and worse clinical outcomes in animal and human studies. The majority of P. aeruginosa strains secrete ExoS, a bifunctional toxin with GTPase-activating protein and ADP-ribosyltransferase activities. Numerous in vitro studies have investigated the targets and cellular effects of ExoS, linking both its enzymatic activities with inhibition of bacterial internalization. However, little is known about how this toxin facilitates the progression of infection in vivo. In this study, we used a mouse model to investigate the role of ExoS in inhibiting phagocytosis during pneumonia. We first confirmed previous findings that the ADP-ribosyltransferase activity of ExoS, but not the GTPase-activating protein activity, was responsible for bacterial persistence and decreased host survival in this model. We then used two distinct assays to demonstrate that ExoS inhibited phagocytosis during pneumonia. In contrast to the findings of several in vitro studies, this in vivo inhibition was also dependent on the ADP-ribosyltransferase activity, but not the GTPase-activating protein activity, of ExoS. These results demonstrate for the first time the antiphagocytic function of ExoS in the context of an actual infection and indicate that blocking the ADP-ribosyltransferase activity of ExoS may have potential therapeutic benefit. American Society of Microbiology 2014-06-10 /pmc/articles/PMC4056551/ /pubmed/24917597 http://dx.doi.org/10.1128/mBio.01080-14 Text en Copyright © 2014 Rangel et al. http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0/) , which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Rangel, Stephanie M. Logan, Latania K. Hauser, Alan R. The ADP-Ribosyltransferase Domain of the Effector Protein ExoS Inhibits Phagocytosis of Pseudomonas aeruginosa during Pneumonia |
title | The ADP-Ribosyltransferase Domain of the Effector Protein ExoS Inhibits Phagocytosis of Pseudomonas aeruginosa during Pneumonia |
title_full | The ADP-Ribosyltransferase Domain of the Effector Protein ExoS Inhibits Phagocytosis of Pseudomonas aeruginosa during Pneumonia |
title_fullStr | The ADP-Ribosyltransferase Domain of the Effector Protein ExoS Inhibits Phagocytosis of Pseudomonas aeruginosa during Pneumonia |
title_full_unstemmed | The ADP-Ribosyltransferase Domain of the Effector Protein ExoS Inhibits Phagocytosis of Pseudomonas aeruginosa during Pneumonia |
title_short | The ADP-Ribosyltransferase Domain of the Effector Protein ExoS Inhibits Phagocytosis of Pseudomonas aeruginosa during Pneumonia |
title_sort | adp-ribosyltransferase domain of the effector protein exos inhibits phagocytosis of pseudomonas aeruginosa during pneumonia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4056551/ https://www.ncbi.nlm.nih.gov/pubmed/24917597 http://dx.doi.org/10.1128/mBio.01080-14 |
work_keys_str_mv | AT rangelstephaniem theadpribosyltransferasedomainoftheeffectorproteinexosinhibitsphagocytosisofpseudomonasaeruginosaduringpneumonia AT loganlataniak theadpribosyltransferasedomainoftheeffectorproteinexosinhibitsphagocytosisofpseudomonasaeruginosaduringpneumonia AT hauseralanr theadpribosyltransferasedomainoftheeffectorproteinexosinhibitsphagocytosisofpseudomonasaeruginosaduringpneumonia AT rangelstephaniem adpribosyltransferasedomainoftheeffectorproteinexosinhibitsphagocytosisofpseudomonasaeruginosaduringpneumonia AT loganlataniak adpribosyltransferasedomainoftheeffectorproteinexosinhibitsphagocytosisofpseudomonasaeruginosaduringpneumonia AT hauseralanr adpribosyltransferasedomainoftheeffectorproteinexosinhibitsphagocytosisofpseudomonasaeruginosaduringpneumonia |