Cargando…

A Rule-Based Prognostic Model for Type 1 Diabetes by Identifying and Synthesizing Baseline Profile Patterns

OBJECTIVE: To identify the risk-predictive baseline profile patterns of demographic, genetic, immunologic, and metabolic markers and synthesize these patterns for risk prediction. RESEARCH DESIGN AND METHODS: RuleFit is used to identify the risk-predictive baseline profile patterns of demographic, i...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Ying, Qian, Xiaoning, Krischer, Jeffrey, Vehik, Kendra, Lee, Hye-Seung, Huang, Shuai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057076/
https://www.ncbi.nlm.nih.gov/pubmed/24926781
http://dx.doi.org/10.1371/journal.pone.0091095
Descripción
Sumario:OBJECTIVE: To identify the risk-predictive baseline profile patterns of demographic, genetic, immunologic, and metabolic markers and synthesize these patterns for risk prediction. RESEARCH DESIGN AND METHODS: RuleFit is used to identify the risk-predictive baseline profile patterns of demographic, immunologic, and metabolic markers, using 356 subjects who were randomized into the control arm of the prospective Diabetes Prevention Trial-Type 1 (DPT-1) study. A novel latent trait model is developed to synthesize these baseline profile patterns for disease risk prediction. The primary outcome was Type 1 Diabetes (T1D) onset. RESULTS: We identified ten baseline profile patterns that were significantly predictive to the disease onset. Using these ten baseline profile patterns, a risk prediction model was built based on the latent trait model, which produced superior prediction performance over existing risk score models for T1D. CONCLUSION: Our results demonstrated that the underlying disease progression process of T1D can be detected through some risk-predictive patterns of demographic, immunologic, and metabolic markers. A synthesis of these patterns provided accurate prediction of disease onset, leading to more cost-effective design of prevention trials of T1D in the future.