Cargando…

Local and systemic innate immune response to secondary human peritonitis

INTRODUCTION: Our aim was to describe inflammatory cytokines response in the peritoneum and plasma of patients with peritonitis. We also tested the hypothesis that scenarios associated with worse outcome would result in different cytokine release patterns. Therefore, we compared cytokine responses a...

Descripción completa

Detalles Bibliográficos
Autores principales: Riché, Florence, Gayat, Etienne, Collet, Corinne, Matéo, Joaquim, Laisné, Marie-Josèphe, Launay, Jean-Marie, Valleur, Patrice, Payen, Didier, Cholley, Bernard P
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057228/
https://www.ncbi.nlm.nih.gov/pubmed/24028733
http://dx.doi.org/10.1186/cc12895
Descripción
Sumario:INTRODUCTION: Our aim was to describe inflammatory cytokines response in the peritoneum and plasma of patients with peritonitis. We also tested the hypothesis that scenarios associated with worse outcome would result in different cytokine release patterns. Therefore, we compared cytokine responses according to the occurrence of septic shock, mortality, type of peritonitis and peritoneal microbiology. METHODS: Peritoneal and plasma cytokines (interleukin (IL) 1, tumor necrosis factor α (TNFα), IL-6, IL-10, and interferon γ (IFNγ)) were measured in 66 patients with secondary peritonitis. RESULTS: The concentration ratio between peritoneal fluid and plasma cytokines varied from 5 (2 to 21) (IFNγ) to 1310 (145 to 3888) (IL-1). There was no correlation between plasma and peritoneal fluid concentration of any cytokine. In the plasma, TNFα, IL-6, IFNγ and IL-10 were higher in patients with shock versus no shock and in nonsurvivors versus survivors (P ≤0.03). There was no differential plasma release for any cytokine between community-acquired and postoperative peritonitis. The presence of anaerobes or Enterococcus species in peritoneal fluid was associated with higher plasma TNFα: 50 (37 to 106) versus 38 (29 to 66) and 45 (36 to 87) versus 39 (27 to 67) pg/ml, respectively (P = 0.02). In the peritoneal compartment, occurrence of shock did not result in any difference in peritoneal cytokines. Peritoneal IL-10 was higher in patients who survived (1505 (450 to 3130) versus 102 (9 to 710) pg/ml; P = 0.04). The presence of anaerobes and Enterococcus species was associated with higher peritoneal IFNγ: 2 (1 to 6) versus 10 (5 to 28) and 7 (2 to 39) versus 2 (1 to 6), P = 0.01 and 0.05, respectively). CONCLUSIONS: Peritonitis triggers an acute systemic and peritoneal innate immune response with a simultaneous release of pro and anti-inflammatory cytokines. Higher levels of all cytokines were observed in the plasma of patients with the most severe conditions (shock, non-survivors), but this difference was not reflected in their peritoneal fluid. There was always a large gradient in cytokine concentration between peritoneal and plasma compartments highlighting the importance of compartmentalization of innate immune response in peritonitis.