Cargando…
The Influence of Photoreceptor Size and Distribution on Optical Sensitivity in the Eyes of Lanternfishes (Myctophidae)
The mesopelagic zone of the deep-sea (200-1000 m) is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence w...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057366/ https://www.ncbi.nlm.nih.gov/pubmed/24927016 http://dx.doi.org/10.1371/journal.pone.0099957 |
_version_ | 1782320948483981312 |
---|---|
author | de Busserolles, Fanny Fitzpatrick, John L. Marshall, N. Justin Collin, Shaun P. |
author_facet | de Busserolles, Fanny Fitzpatrick, John L. Marshall, N. Justin Collin, Shaun P. |
author_sort | de Busserolles, Fanny |
collection | PubMed |
description | The mesopelagic zone of the deep-sea (200-1000 m) is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence will depend on the visual task and ultimately on the eyes and their capacity for detecting low levels of illumination and intermittent point sources of bioluminescent light. In this study, we investigate the diversity of the visual system of the lanternfish (Myctophidae). We focus specifically on the photoreceptor cells by examining their size, arrangement, topographic distribution and contribution to optical sensitivity in 53 different species from 18 genera. We also examine the influence(s) of both phylogeny and ecology on these photoreceptor variables using phylogenetic comparative analyses in order to understand the constraints placed on the visual systems of this large group of mesopelagic fishes at the first stage of retinal processing. We report great diversity in the visual system of the Myctophidae at the level of the photoreceptors. Photoreceptor distribution reveals clear interspecific differences in visual specialisations (areas of high rod photoreceptor density), indicating potential interspecific differences in interactions with prey, predators and/or mates. A great diversity in photoreceptor design (length and diameter) and density is also present. Overall, the myctophid eye is very sensitive compared to other teleosts and each species seems to be specialised for the detection of a specific signal (downwelling light or bioluminescence), potentially reflecting different visual demands for survival. Phylogenetic comparative analyses highlight several relationships between photoreceptor characteristics and the ecological variables tested (depth distribution and luminous tissue patterns). Depth distribution at night was a significant factor in most of the models tested, indicating that vision at night is of great importance for lanternfishes and may drive the evolution of their photoreceptor design. |
format | Online Article Text |
id | pubmed-4057366 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40573662014-06-18 The Influence of Photoreceptor Size and Distribution on Optical Sensitivity in the Eyes of Lanternfishes (Myctophidae) de Busserolles, Fanny Fitzpatrick, John L. Marshall, N. Justin Collin, Shaun P. PLoS One Research Article The mesopelagic zone of the deep-sea (200-1000 m) is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence will depend on the visual task and ultimately on the eyes and their capacity for detecting low levels of illumination and intermittent point sources of bioluminescent light. In this study, we investigate the diversity of the visual system of the lanternfish (Myctophidae). We focus specifically on the photoreceptor cells by examining their size, arrangement, topographic distribution and contribution to optical sensitivity in 53 different species from 18 genera. We also examine the influence(s) of both phylogeny and ecology on these photoreceptor variables using phylogenetic comparative analyses in order to understand the constraints placed on the visual systems of this large group of mesopelagic fishes at the first stage of retinal processing. We report great diversity in the visual system of the Myctophidae at the level of the photoreceptors. Photoreceptor distribution reveals clear interspecific differences in visual specialisations (areas of high rod photoreceptor density), indicating potential interspecific differences in interactions with prey, predators and/or mates. A great diversity in photoreceptor design (length and diameter) and density is also present. Overall, the myctophid eye is very sensitive compared to other teleosts and each species seems to be specialised for the detection of a specific signal (downwelling light or bioluminescence), potentially reflecting different visual demands for survival. Phylogenetic comparative analyses highlight several relationships between photoreceptor characteristics and the ecological variables tested (depth distribution and luminous tissue patterns). Depth distribution at night was a significant factor in most of the models tested, indicating that vision at night is of great importance for lanternfishes and may drive the evolution of their photoreceptor design. Public Library of Science 2014-06-13 /pmc/articles/PMC4057366/ /pubmed/24927016 http://dx.doi.org/10.1371/journal.pone.0099957 Text en © 2014 de Busserolles et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article de Busserolles, Fanny Fitzpatrick, John L. Marshall, N. Justin Collin, Shaun P. The Influence of Photoreceptor Size and Distribution on Optical Sensitivity in the Eyes of Lanternfishes (Myctophidae) |
title | The Influence of Photoreceptor Size and Distribution on Optical Sensitivity in the Eyes of Lanternfishes (Myctophidae) |
title_full | The Influence of Photoreceptor Size and Distribution on Optical Sensitivity in the Eyes of Lanternfishes (Myctophidae) |
title_fullStr | The Influence of Photoreceptor Size and Distribution on Optical Sensitivity in the Eyes of Lanternfishes (Myctophidae) |
title_full_unstemmed | The Influence of Photoreceptor Size and Distribution on Optical Sensitivity in the Eyes of Lanternfishes (Myctophidae) |
title_short | The Influence of Photoreceptor Size and Distribution on Optical Sensitivity in the Eyes of Lanternfishes (Myctophidae) |
title_sort | influence of photoreceptor size and distribution on optical sensitivity in the eyes of lanternfishes (myctophidae) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057366/ https://www.ncbi.nlm.nih.gov/pubmed/24927016 http://dx.doi.org/10.1371/journal.pone.0099957 |
work_keys_str_mv | AT debusserollesfanny theinfluenceofphotoreceptorsizeanddistributiononopticalsensitivityintheeyesoflanternfishesmyctophidae AT fitzpatrickjohnl theinfluenceofphotoreceptorsizeanddistributiononopticalsensitivityintheeyesoflanternfishesmyctophidae AT marshallnjustin theinfluenceofphotoreceptorsizeanddistributiononopticalsensitivityintheeyesoflanternfishesmyctophidae AT collinshaunp theinfluenceofphotoreceptorsizeanddistributiononopticalsensitivityintheeyesoflanternfishesmyctophidae AT debusserollesfanny influenceofphotoreceptorsizeanddistributiononopticalsensitivityintheeyesoflanternfishesmyctophidae AT fitzpatrickjohnl influenceofphotoreceptorsizeanddistributiononopticalsensitivityintheeyesoflanternfishesmyctophidae AT marshallnjustin influenceofphotoreceptorsizeanddistributiononopticalsensitivityintheeyesoflanternfishesmyctophidae AT collinshaunp influenceofphotoreceptorsizeanddistributiononopticalsensitivityintheeyesoflanternfishesmyctophidae |