Cargando…
An estrogen analogue and promising anticancer agent refrains from inducing morphological damage and reactive oxygen species generation in erythrocytes, fibrin and platelets: a pilot study
BACKGROUND: 2-Methoxyestradiol is known to have antitumour and antiproliferative action in vitro and in vivo. However, when 2-methoxyestradiol is orally administered, it is rapidly oxidized by the enzyme 17β-hydroxysteriod dehydrogenase in the gastrointestinal tract. Therefore, 2-methoxyestradiol n...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057810/ https://www.ncbi.nlm.nih.gov/pubmed/24932135 http://dx.doi.org/10.1186/1475-2867-14-48 |
Sumario: | BACKGROUND: 2-Methoxyestradiol is known to have antitumour and antiproliferative action in vitro and in vivo. However, when 2-methoxyestradiol is orally administered, it is rapidly oxidized by the enzyme 17β-hydroxysteriod dehydrogenase in the gastrointestinal tract. Therefore, 2-methoxyestradiol never reaches high enough concentrations in the tissue to be able to exert these antitumour properties. This resulted in the in silico-design of 2-methoxyestradiol analogues in collaboration with the Bioinformatics and Computational Biology Unit (UP) and subsequent synthesis by iThemba Pharmaceuticals (Pty) Ltd (Modderfontein, Midrand, South Africa). One such a novelty-designed analogue is 2-ethyl-3-O-sulphamoyl-estra-1, 3, 5(10)16-tetraene (ESE-16). METHODS: This pilot study aimed to determine the morphological effect and possible generation of reactive oxygen species by ESE-16 on erythrocytes and platelet samples (with and without added thrombin) by means of scanning electron microscopy, transmission electron microscopy and flow cytometry. RESULTS: Erythrocytes and platelets were exposed to ESE-16 at a concentration of 180nM for 24 hours. Scanning- and transmission electron microscopy indicated that ESE-16 did not cause changes to erythrocytes, platelets or fibrin networks. Flow cytometry measurements of hydrogen peroxide and superoxide indicated that ESE-16 does not cause an increase in the generation of reactive oxygen species in these blood samples. CONCLUSION: Further in vivo research is warranted to determine whether this novel in silico-designed analogue may impact on development of future chemotherapeutic agents and whether it could be considered as an antitumour agent. |
---|