Cargando…
Machine learning classification of resting state functional connectivity predicts smoking status
Machine learning-based approaches are now able to examine functional magnetic resonance imaging data in a multivariate manner and extract features predictive of group membership. We applied support vector machine (SVM)-based classification to resting state functional connectivity (rsFC) data from ni...
Autores principales: | Pariyadath, Vani, Stein, Elliot A., Ross, Thomas J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4058899/ https://www.ncbi.nlm.nih.gov/pubmed/24982629 http://dx.doi.org/10.3389/fnhum.2014.00425 |
Ejemplares similares
-
Combining Multiple Resting-State fMRI Features during Classification: Optimized Frameworks and Their Application to Nicotine Addiction
por: Ding, Xiaoyu, et al.
Publicado: (2017) -
Machine Learning Based Classification of Resting-State fMRI Features Exemplified by Metabolic State (Hunger/Satiety)
por: Al-Zubaidi, Arkan, et al.
Publicado: (2019) -
Classification of schizophrenia patients based on resting-state functional network connectivity
por: Arbabshirani, Mohammad R., et al.
Publicado: (2013) -
Resting state functional connectivity predicts neurofeedback response
por: Scheinost, Dustin, et al.
Publicado: (2014) -
Characterizing Functional Connectivity Differences in Aging Adults using Machine Learning on Resting State fMRI Data
por: Vergun, Svyatoslav, et al.
Publicado: (2013)