Cargando…
Deep learning of the tissue-regulated splicing code
Motivation: Alternative splicing (AS) is a regulated process that directs the generation of different transcripts from single genes. A computational model that can accurately predict splicing patterns based on genomic features and cellular context is highly desirable, both in understanding this wide...
Autores principales: | Leung, Michael K. K., Xiong, Hui Yuan, Lee, Leo J., Frey, Brendan J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4058935/ https://www.ncbi.nlm.nih.gov/pubmed/24931975 http://dx.doi.org/10.1093/bioinformatics/btu277 |
Ejemplares similares
-
BlockClust: efficient clustering and classification of non-coding RNAs from short read RNA-seq profiles
por: Videm, Pavankumar, et al.
Publicado: (2014) -
Accurate viral population assembly from ultra-deep sequencing data
por: Mangul, Serghei, et al.
Publicado: (2014) -
Metabolite identification through multiple kernel learning on fragmentation trees
por: Shen, Huibin, et al.
Publicado: (2014) -
New directions for diffusion-based network prediction of protein function: incorporating pathways with confidence
por: Cao, Mengfei, et al.
Publicado: (2014) -
A combinatorial approach for analyzing intra-tumor heterogeneity from high-throughput sequencing data
por: Hajirasouliha, Iman, et al.
Publicado: (2014)