Cargando…
Synthesis and Reactivity of 4′-Deoxypentenosyl Disaccharides
[Image: see text] 4-Deoxypentenosides (4-DPs) are versatile synthons for rare or higher-order pyranosides, and they provide an entry for structural diversification at the C5 position. Previous studies have shown that 4-DPs undergo stereocontrolled DMDO oxidation; subsequent epoxide ring-openings wit...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059249/ https://www.ncbi.nlm.nih.gov/pubmed/24797640 http://dx.doi.org/10.1021/jo500449h |
Sumario: | [Image: see text] 4-Deoxypentenosides (4-DPs) are versatile synthons for rare or higher-order pyranosides, and they provide an entry for structural diversification at the C5 position. Previous studies have shown that 4-DPs undergo stereocontrolled DMDO oxidation; subsequent epoxide ring-openings with various nucleophiles can proceed with both anti or syn selectivity. Here, we report the synthesis of α- and β-linked 4′-deoxypentenosyl (4′-DP) disaccharides, and we investigate their post-glycosylational C5′ additions using the DMDO oxidation/ring-opening sequence. The α-linked 4′-DP disaccharides were synthesized by coupling thiophenyl 4-DP donors with glycosyl acceptors using BSP/Tf(2)O activation, whereas β-linked 4′-DP disaccharides were generated by the decarboxylative elimination of glucuronyl disaccharides under microwave conditions. Both α- and β-linked 4′-DP disaccharides could be epoxidized with high stereoselectivity using DMDO. In some cases, the α-epoxypentenosides could be successfully converted into terminal l-iduronic acids via the syn addition of 2-furylzinc bromide. These studies support a novel approach to oligosaccharide synthesis, in which the stereochemical configuration of the terminal 4′-DP unit is established at a post-glycosylative stage. |
---|