Cargando…
Silyl Imine Electrophiles in Enantioselective Catalysis: A Rosetta Stone for Peptide Homologation, Enabling Diverse N-Protected Aryl Glycines from Aldehydes in Three Steps
[Image: see text] We report that N-(trimethylsilyl)imines serve in the Bis(AMidine)-catalyzed addition of bromonitromethane with a high degree of enantioselection. This allows for the production of a range of protected α-bromo nitroalkane donors (including Fmoc) for use in Umpolung Amide Synthesis (...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059254/ https://www.ncbi.nlm.nih.gov/pubmed/24828455 http://dx.doi.org/10.1021/ol501297a |
Sumario: | [Image: see text] We report that N-(trimethylsilyl)imines serve in the Bis(AMidine)-catalyzed addition of bromonitromethane with a high degree of enantioselection. This allows for the production of a range of protected α-bromo nitroalkane donors (including Fmoc) for use in Umpolung Amide Synthesis (UmAS). Hence, peptide homologation with nonnatural aryl glycine amino acids is achieved in three steps from aromatic aldehydes, which are plentiful and inexpensive. Epimerization during the homologation step is circumvented by avoiding an α-amino acid intermediate. |
---|