Cargando…
The role of the endosomal sorting complexes required for transport (ESCRT) in tumorigenesis
The endosomal sorting complexes required for transport (ESCRT) are needed for three distinct cellular functions in higher eukaryotes: (i) Multivesicular body formation for the degradation of transmembrane proteins in lysosomes, (ii) midbody abscission during cytokinesis and (iii) retroviral budding....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059258/ https://www.ncbi.nlm.nih.gov/pubmed/24641493 http://dx.doi.org/10.3109/09687688.2014.894210 |
Sumario: | The endosomal sorting complexes required for transport (ESCRT) are needed for three distinct cellular functions in higher eukaryotes: (i) Multivesicular body formation for the degradation of transmembrane proteins in lysosomes, (ii) midbody abscission during cytokinesis and (iii) retroviral budding. Not surprisingly, loss of ESCRT function has severe consequences, which include the failure to down-regulate growth factor receptors leading to deregulated mitogenic signaling. While it is clear that the function of the ESCRT machinery is important for embryonic development, its role in cancer is more controversial. Various experimental approaches in different model organisms arrive at partially divergent conclusions regarding the contribution of ESCRTs to tumorigenesis. Therefore the aim of this review is to provide an overview on different model systems used to study the role of the ESCRT machinery in cancer development, to highlight common grounds and present certain controversies in the field. |
---|