Cargando…

Best conditions for biodegradation of diesel oil by chemometric tools

Diesel oil biodegradation by different bacteria-yeast-rhamnolipids consortia was tested. Chromatographic analysis of post-biodegradation residue was completed with chemometric tools (ANOVA, and a novel ranking procedure based on the sum of ranking differences). These tools were used in the selection...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaczorek, Ewa, Bielicka-Daszkiewicz, Katarzyna, Héberger, Károly, Kemény, Sándor, Olszanowski, Andrzej, Voelkel, Adam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sociedade Brasileira de Microbiologia 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059286/
https://www.ncbi.nlm.nih.gov/pubmed/24948922
http://dx.doi.org/10.1590/S1517-83822014005000029
Descripción
Sumario:Diesel oil biodegradation by different bacteria-yeast-rhamnolipids consortia was tested. Chromatographic analysis of post-biodegradation residue was completed with chemometric tools (ANOVA, and a novel ranking procedure based on the sum of ranking differences). These tools were used in the selection of the most effective systems. The best results of aliphatic fractions of diesel oil biodegradation were observed for a yeast consortia with Aeromonas hydrophila KR4. For these systems the positive effect of rhamnolipids on hydrocarbon biodegradation was observed. However, rhamnolipids addition did not always have a positive influence on the biodegradation process (e.g. in case of yeast consortia with Stenotrophomonas maltophila KR7). Moreover, particular differences in the degradation pattern were observed for lower and higher alkanes than in the case with C22. Normally, the best conditions for “lower” alkanes are Aeromonas hydrophila KR4 + emulsifier independently from yeasts and e.g. Pseudomonas stutzeri KR7 for C24 alkane.