Cargando…

Genome-wide transcription analyses in Mycobacterium tuberculosis treated with lupulone

Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, still causes higher mortality than any other bacterial pathogen until now. With the emergence and spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR-TB) strains, it becomes more important to searc...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Jian, Liang, Junchao, Shi, Qiyun, Yuan, Peng, Meng, Rizeng, Tang, Xudong, Yu, Lu, Guo, Na
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sociedade Brasileira de Microbiologia 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059319/
https://www.ncbi.nlm.nih.gov/pubmed/24948953
http://dx.doi.org/10.1590/S1517-83822014005000032
Descripción
Sumario:Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, still causes higher mortality than any other bacterial pathogen until now. With the emergence and spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR-TB) strains, it becomes more important to search for alternative targets to develop new antimycobacterial drugs. Lupulone is a compound extracted from Hops (Hurnulus lupulus), which exhibits a good antimicrobial activity against M. tuberculosis with minimal inhibitory concentration (MIC) value of 10 μg/mL, but the response mechanisms of lupulone against M. tuberculosis are still poorly understood. In this study, we used a commercial oligonucleotide microarray to determine the overall transcriptional response of M. tuberculosis H37Rv triggered by exposure to MIC of lupulone. A total of 540 genes were found to be differentially regulated by lupulone. Of these, 254 genes were upregulated, and 286 genes were downregulated. A number of important genes were significantly regulated which are involved in various pathways, such as surface-exposed lipids, cytochrome P450 enzymes, PE/PPE multigene families, ABC transporters, and protein synthesis. Real-time quantitative RT-PCR was performed for choosed genes to verified the microarray results. To our knowledge, this genome-wide transcriptomics approach has produced the first insights into the response of M. tuberculosis to a lupulone challenge.