Cargando…
Dynamical Phenotyping: Using Temporal Analysis of Clinically Collected Physiologic Data to Stratify Populations
Using glucose time series data from a well measured population drawn from an electronic health record (EHR) repository, the variation in predictability of glucose values quantified by the time-delayed mutual information (TDMI) was explained using a mechanistic endocrine model and manual and automate...
Autores principales: | Albers, D. J., Elhadad, Noémie, Tabak, E., Perotte, A., Hripcsak, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059642/ https://www.ncbi.nlm.nih.gov/pubmed/24933368 http://dx.doi.org/10.1371/journal.pone.0096443 |
Ejemplares similares
-
Estimating summary statistics for electronic health record laboratory data for use in high-throughput phenotyping algorithms
por: Albers, D.J., et al.
Publicado: (2018) -
Population Physiology: Leveraging Electronic Health Record Data to Understand Human Endocrine Dynamics
por: Albers, D. J., et al.
Publicado: (2012) -
Parameterizing time in electronic health record studies
por: Hripcsak, George, et al.
Publicado: (2015) -
Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis
por: Perotte, Adler, et al.
Publicado: (2015) -
Mechanistic machine learning: how data assimilation leverages physiologic knowledge using Bayesian inference to forecast the future, infer the present, and phenotype
por: Albers, David J, et al.
Publicado: (2018)