Cargando…

The Analytic Bilinear Discrimination of Single-Trial EEG Signals in Rapid Image Triage

The linear discriminant analysis (LDA) method is a classical and commonly utilized technique for dimensionality reduction and classification in brain-computer interface (BCI) systems. Being a first-order discriminator, LDA is usually preceded by the feature extraction of electroencephalogram (EEG) s...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Ke, AI-Nashash, Hasan, Thakor, Nitish, Li, Xiaoping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059712/
https://www.ncbi.nlm.nih.gov/pubmed/24933017
http://dx.doi.org/10.1371/journal.pone.0100097
Descripción
Sumario:The linear discriminant analysis (LDA) method is a classical and commonly utilized technique for dimensionality reduction and classification in brain-computer interface (BCI) systems. Being a first-order discriminator, LDA is usually preceded by the feature extraction of electroencephalogram (EEG) signals, as multi-density EEG data are of second order. In this study, an analytic bilinear classification method which inherits and extends LDA is proposed. This method considers 2-dimentional EEG signals as the feature input and performs classification using the optimized complex-valued bilinear projections. Without being transformed into frequency domain, the complex-valued bilinear projections essentially spatially and temporally modulate the phases and magnitudes of slow event-related potentials (ERPs) elicited by distinct brain states in the sense that they become more separable. The results show that the proposed method has demonstrated its discriminating capability in the development of a rapid image triage (RIT) system, which is a challenging variant of BCIs due to the fast presentation speed and consequently overlapping of ERPs.