Cargando…
Mining Gene Expression Data of Multiple Sclerosis
OBJECTIVES: Microarray produces a large amount of gene expression data, containing various biological implications. The challenge is to detect a panel of discriminative genes associated with disease. This study proposed a robust classification model for gene selection using gene expression data, and...
Autores principales: | Guo, Pi, Zhang, Qin, Zhu, Zhenli, Huang, Zhengliang, Li, Ke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059716/ https://www.ncbi.nlm.nih.gov/pubmed/24932510 http://dx.doi.org/10.1371/journal.pone.0100052 |
Ejemplares similares
-
Integration of Genetic and Immune Infiltration Insights into Data Mining of Multiple Sclerosis Pathogenesis
por: Zhang, Xiaoyun, et al.
Publicado: (2022) -
A Prognostic 14-Gene Expression Signature for Lung Adenocarcinoma: A Study Based on TCGA Data Mining
por: Liu, Jie, et al.
Publicado: (2020) -
Mining Complex Genetic Patterns Conferring Multiple Sclerosis Risk
por: Briggs, Farren B. S., et al.
Publicado: (2021) -
Mining Gene Expression Data for Drug Discovery
por: Pandika, Melissa
Publicado: (2018) -
A novel data mining system points out hidden relationships between immunological markers in multiple sclerosis
por: Gironi, Maira, et al.
Publicado: (2013)