Cargando…

Transcriptome assemblies for studying sex-biased gene expression in the guppy, Poecilia reticulata

BACKGROUND: Sexually dimorphic phenotypes are generally associated with differential gene expression between the sexes. The study of molecular evolution and genomic location of these differentially expressed, or sex-biased, genes is important for understanding inter-sexual divergence under sex-speci...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharma, Eshita, Künstner, Axel, Fraser, Bonnie A, Zipprich, Gideon, Kottler, Verena A, Henz, Stefan R, Weigel, Detlef, Dreyer, Christine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059875/
https://www.ncbi.nlm.nih.gov/pubmed/24886435
http://dx.doi.org/10.1186/1471-2164-15-400
Descripción
Sumario:BACKGROUND: Sexually dimorphic phenotypes are generally associated with differential gene expression between the sexes. The study of molecular evolution and genomic location of these differentially expressed, or sex-biased, genes is important for understanding inter-sexual divergence under sex-specific selection pressures. Teleost fish provide a unique opportunity to examine this divergence in the presence of variable sex-determination mechanisms of recent origin. The guppy, Poecilia reticulata, displays sexual dimorphism in size, ornaments, and behavior, traits shaped by natural and sexual selection in the wild. RESULTS: To gain insight into molecular mechanisms underlying the guppy’s sexual dimorphism, we assembled a reference transcriptome combining genome-independent as well as genome-guided assemblies and analyzed sex-biased gene expression between different tissues of adult male and female guppies. We found tissue-associated sex-biased expression of genes related to pigmentation, signal transduction, and spermatogenesis in males; and growth, cell-division, extra-cellular matrix organization, nutrient transport, and folliculogenesis in females. While most sex-biased genes were randomly distributed across linkage groups, we observed accumulation of ovary-biased genes on the sex linkage group, LG12. Both testis-biased and ovary-biased genes showed a significantly higher rate of non-synonymous to synonymous substitutions (d(N)/d(S)) compared to unbiased genes. However, in somatic tissues only female-biased genes, including those co-expressed in multiple tissues, showed elevated ratios of non-synonymous substitutions. CONCLUSIONS: Our work identifies a set of annotated gene products that are candidate factors affecting sexual dimorphism in guppies. The differential genomic distribution of gonad-biased genes provides evidence for sex-specific selection pressures acting on the nascent sex chromosomes of the guppy. The elevated rates of evolution of testis-biased and female-biased genes indicate differing evolution under distinct selection pressures on the reproductive versus non-reproductive tissues. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-400) contains supplementary material, which is available to authorized users.