Cargando…
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
Human cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quanti...
Autores principales: | Aerts, Hugo J. W. L., Velazquez, Emmanuel Rios, Leijenaar, Ralph T. H., Parmar, Chintan, Grossmann, Patrick, Cavalho, Sara, Bussink, Johan, Monshouwer, René, Haibe-Kains, Benjamin, Rietveld, Derek, Hoebers, Frank, Rietbergen, Michelle M., Leemans, C. René, Dekker, Andre, Quackenbush, John, Gillies, Robert J., Lambin, Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059926/ https://www.ncbi.nlm.nih.gov/pubmed/24892406 http://dx.doi.org/10.1038/ncomms5006 |
Ejemplares similares
-
Corrigendum: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
por: Aerts, Hugo J.W.L., et al.
Publicado: (2014) -
Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer
por: Parmar, Chintan, et al.
Publicado: (2015) -
Defining the biological basis of radiomic phenotypes in lung cancer
por: Grossmann, Patrick, et al.
Publicado: (2017) -
Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer
por: Parmar, Chintan, et al.
Publicado: (2015) -
Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology
por: Wu, Weimiao, et al.
Publicado: (2016)