Cargando…

Small non-coding RNA signature in multiple sclerosis patients after treatment with interferon-β

BACKGROUND: Non-coding small RNA molecules play pivotal roles in cellular and developmental processes by regulating gene expression at the post-transcriptional level. In human diseases, the roles of the non-coding small RNAs in specific degradation or translational suppression of the targeted mRNAs...

Descripción completa

Detalles Bibliográficos
Autores principales: De Felice, Bruna, Mondola, Paolo, Sasso, Anna, Orefice, Giuseppe, Bresciamorra, Vincenzo, Vacca, Giovanni, Biffali, Elio, Borra, Marco, Pannone, Raimondo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060096/
https://www.ncbi.nlm.nih.gov/pubmed/24885345
http://dx.doi.org/10.1186/1755-8794-7-26
Descripción
Sumario:BACKGROUND: Non-coding small RNA molecules play pivotal roles in cellular and developmental processes by regulating gene expression at the post-transcriptional level. In human diseases, the roles of the non-coding small RNAs in specific degradation or translational suppression of the targeted mRNAs suggest a potential therapeutic approach of post-transcriptional gene silencing that targets the underlying disease etiology. The involvement of non-coding small RNAs in the pathogenesis of neurodegenerative diseases such as Alzheimer’s , Parkinson’s disease and Multiple Sclerosis has been demonstrated. Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, characterized by chronic inflammation, demyelination and scarring as well as a broad spectrum of signs and symptoms. The current standard treatment for SM is interferon ß (IFNß) that is less than ideal due to side effects. In this study we administered the standard IFN-ß treatment to Relapsing-Remitting MS patients, all responder to the therapy; then examined their sncRNA expression profiles in order to identify the ncRNAs that were associated with MS patients’ response to IFNß. METHODS: 40 IFNß treated Relapsing-Remitting MS patients were enrolled. We analyzed the composition of the entire small transcriptome by a small RNA cloning method, using peripheral blood from Relapsing-Remitting MS patients at baseline and 3 and 6 months after the start of IFNß therapy. Real-time qPCR from the same patients group and from 20 additional patients was performed to profile miRNAs expression. RESULTS: Beside the altered expression of several miRNAs, our analyses revealed the differential expression of small nucleolar RNAs and misc-RNAs.For the first time, we found that the expression level of miR-26a-5p changed related to INF-β response. MiR-26a-5p expression was significantly higher in IFN-β treated RRMS patients at 3 months treatment, keeping quite stable at 6 months treatments. CONCLUSIONS: Our results might provide insights into the mechanisms of action of IFN-β treatment in MS and provide fundamentals for the development of new biomarkers and/or therapeutic tools.