Cargando…
In Silico Molecular Docking and In Vitro Antidiabetic Studies of Dihydropyrimido[4,5-a]acridin-2-amines
An in vitro antidiabetic activity on α-amylase and α–glucosidase activity of novel 10-chloro-4-(2-chlorophenyl)-12-phenyl-5,6-dihydropyrimido[4,5-a]acridin-2-amines (3a–3f) were evaluated. Structures of the synthesized molecules were studied by FT-IR, (1)H NMR, (13)C NMR, EI-MS, and single crystal X...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060768/ https://www.ncbi.nlm.nih.gov/pubmed/24991576 http://dx.doi.org/10.1155/2014/971569 |
Sumario: | An in vitro antidiabetic activity on α-amylase and α–glucosidase activity of novel 10-chloro-4-(2-chlorophenyl)-12-phenyl-5,6-dihydropyrimido[4,5-a]acridin-2-amines (3a–3f) were evaluated. Structures of the synthesized molecules were studied by FT-IR, (1)H NMR, (13)C NMR, EI-MS, and single crystal X-ray structural analysis data. An in silico molecular docking was performed on synthesized molecules (3a–3f). Overall studies indicate that compound 3e is a promising compound leading to the development of selective inhibition of α-amylase and α-glucosidase. |
---|