Cargando…

Inorganic polyphosphate regulates neuronal excitability through modulation of voltage-gated channels

BACKGROUND: Inorganic polyphosphate (polyP) is a highly charged polyanion capable of interacting with a number of molecular targets. This signaling molecule is released into the extracellular matrix by central astrocytes and by peripheral platelets during inflammation. While the release of polyP is...

Descripción completa

Detalles Bibliográficos
Autores principales: Stotz, Stephanie C, Scott, Lucas OM, Drummond-Main, Christopher, Avchalumov, Yosef, Girotto, Fernando, Davidsen, Jörn, Gómez-Gárcia, Maria R, Rho, Jong M, Pavlov, Evgeny V, Colicos, Michael A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061113/
https://www.ncbi.nlm.nih.gov/pubmed/24886461
http://dx.doi.org/10.1186/1756-6606-7-42
_version_ 1782321453718306816
author Stotz, Stephanie C
Scott, Lucas OM
Drummond-Main, Christopher
Avchalumov, Yosef
Girotto, Fernando
Davidsen, Jörn
Gómez-Gárcia, Maria R
Rho, Jong M
Pavlov, Evgeny V
Colicos, Michael A
author_facet Stotz, Stephanie C
Scott, Lucas OM
Drummond-Main, Christopher
Avchalumov, Yosef
Girotto, Fernando
Davidsen, Jörn
Gómez-Gárcia, Maria R
Rho, Jong M
Pavlov, Evgeny V
Colicos, Michael A
author_sort Stotz, Stephanie C
collection PubMed
description BACKGROUND: Inorganic polyphosphate (polyP) is a highly charged polyanion capable of interacting with a number of molecular targets. This signaling molecule is released into the extracellular matrix by central astrocytes and by peripheral platelets during inflammation. While the release of polyP is associated with both induction of blood coagulation and astrocyte extracellular signaling, the role of secreted polyP in regulation of neuronal activity remains undefined. Here we test the hypothesis that polyP is an important participant in neuronal signaling. Specifically, we investigate the ability of neurons to release polyP and to induce neuronal firing, and clarify the underlying molecular mechanisms of this process by studying the action of polyP on voltage gated channels. RESULTS: Using patch clamp techniques, and primary hippocampal and dorsal root ganglion cell cultures, we demonstrate that polyP directly influences neuronal activity, inducing action potential generation in both PNS and CNS neurons. Mechanistically, this is accomplished by shifting the voltage sensitivity of Na(V) channel activation toward the neuronal resting membrane potential, the block K(V) channels, and the activation of Ca(V) channels. Next, using calcium imaging we found that polyP stimulates an increase in neuronal network activity and induces calcium influx in glial cells. Using in situ DAPI localization and live imaging, we demonstrate that polyP is naturally present in synaptic regions and is released from the neurons upon depolarization. Finally, using a biochemical assay we demonstrate that polyP is present in synaptosomes and can be released upon their membrane depolarization by the addition of potassium chloride. CONCLUSIONS: We conclude that polyP release leads to increased excitability of the neuronal membrane through the modulation of voltage gated ion channels. Together, our data establishes that polyP could function as excitatory neuromodulator in both the PNS and CNS.
format Online
Article
Text
id pubmed-4061113
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-40611132014-06-18 Inorganic polyphosphate regulates neuronal excitability through modulation of voltage-gated channels Stotz, Stephanie C Scott, Lucas OM Drummond-Main, Christopher Avchalumov, Yosef Girotto, Fernando Davidsen, Jörn Gómez-Gárcia, Maria R Rho, Jong M Pavlov, Evgeny V Colicos, Michael A Mol Brain Research BACKGROUND: Inorganic polyphosphate (polyP) is a highly charged polyanion capable of interacting with a number of molecular targets. This signaling molecule is released into the extracellular matrix by central astrocytes and by peripheral platelets during inflammation. While the release of polyP is associated with both induction of blood coagulation and astrocyte extracellular signaling, the role of secreted polyP in regulation of neuronal activity remains undefined. Here we test the hypothesis that polyP is an important participant in neuronal signaling. Specifically, we investigate the ability of neurons to release polyP and to induce neuronal firing, and clarify the underlying molecular mechanisms of this process by studying the action of polyP on voltage gated channels. RESULTS: Using patch clamp techniques, and primary hippocampal and dorsal root ganglion cell cultures, we demonstrate that polyP directly influences neuronal activity, inducing action potential generation in both PNS and CNS neurons. Mechanistically, this is accomplished by shifting the voltage sensitivity of Na(V) channel activation toward the neuronal resting membrane potential, the block K(V) channels, and the activation of Ca(V) channels. Next, using calcium imaging we found that polyP stimulates an increase in neuronal network activity and induces calcium influx in glial cells. Using in situ DAPI localization and live imaging, we demonstrate that polyP is naturally present in synaptic regions and is released from the neurons upon depolarization. Finally, using a biochemical assay we demonstrate that polyP is present in synaptosomes and can be released upon their membrane depolarization by the addition of potassium chloride. CONCLUSIONS: We conclude that polyP release leads to increased excitability of the neuronal membrane through the modulation of voltage gated ion channels. Together, our data establishes that polyP could function as excitatory neuromodulator in both the PNS and CNS. BioMed Central 2014-05-31 /pmc/articles/PMC4061113/ /pubmed/24886461 http://dx.doi.org/10.1186/1756-6606-7-42 Text en Copyright © 2014 Stotz et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Stotz, Stephanie C
Scott, Lucas OM
Drummond-Main, Christopher
Avchalumov, Yosef
Girotto, Fernando
Davidsen, Jörn
Gómez-Gárcia, Maria R
Rho, Jong M
Pavlov, Evgeny V
Colicos, Michael A
Inorganic polyphosphate regulates neuronal excitability through modulation of voltage-gated channels
title Inorganic polyphosphate regulates neuronal excitability through modulation of voltage-gated channels
title_full Inorganic polyphosphate regulates neuronal excitability through modulation of voltage-gated channels
title_fullStr Inorganic polyphosphate regulates neuronal excitability through modulation of voltage-gated channels
title_full_unstemmed Inorganic polyphosphate regulates neuronal excitability through modulation of voltage-gated channels
title_short Inorganic polyphosphate regulates neuronal excitability through modulation of voltage-gated channels
title_sort inorganic polyphosphate regulates neuronal excitability through modulation of voltage-gated channels
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061113/
https://www.ncbi.nlm.nih.gov/pubmed/24886461
http://dx.doi.org/10.1186/1756-6606-7-42
work_keys_str_mv AT stotzstephaniec inorganicpolyphosphateregulatesneuronalexcitabilitythroughmodulationofvoltagegatedchannels
AT scottlucasom inorganicpolyphosphateregulatesneuronalexcitabilitythroughmodulationofvoltagegatedchannels
AT drummondmainchristopher inorganicpolyphosphateregulatesneuronalexcitabilitythroughmodulationofvoltagegatedchannels
AT avchalumovyosef inorganicpolyphosphateregulatesneuronalexcitabilitythroughmodulationofvoltagegatedchannels
AT girottofernando inorganicpolyphosphateregulatesneuronalexcitabilitythroughmodulationofvoltagegatedchannels
AT davidsenjorn inorganicpolyphosphateregulatesneuronalexcitabilitythroughmodulationofvoltagegatedchannels
AT gomezgarciamariar inorganicpolyphosphateregulatesneuronalexcitabilitythroughmodulationofvoltagegatedchannels
AT rhojongm inorganicpolyphosphateregulatesneuronalexcitabilitythroughmodulationofvoltagegatedchannels
AT pavlovevgenyv inorganicpolyphosphateregulatesneuronalexcitabilitythroughmodulationofvoltagegatedchannels
AT colicosmichaela inorganicpolyphosphateregulatesneuronalexcitabilitythroughmodulationofvoltagegatedchannels