Cargando…
Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method
The effects of aluminum (Al) interlayer coating and thermal post-treatment on the electron emission characteristics of carbon nanotubes (CNTs) were investigated. These CNTs were deposited on conical-shaped tungsten (W) substrates using an electrophoretic method. The Al interlayers were coated on the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061137/ https://www.ncbi.nlm.nih.gov/pubmed/24959105 http://dx.doi.org/10.1186/1556-276X-9-236 |
_version_ | 1782321458264932352 |
---|---|
author | Kim, Bu-Jong Kim, Jong-Pil Park, Jin-Seok |
author_facet | Kim, Bu-Jong Kim, Jong-Pil Park, Jin-Seok |
author_sort | Kim, Bu-Jong |
collection | PubMed |
description | The effects of aluminum (Al) interlayer coating and thermal post-treatment on the electron emission characteristics of carbon nanotubes (CNTs) were investigated. These CNTs were deposited on conical-shaped tungsten (W) substrates using an electrophoretic method. The Al interlayers were coated on the W substrates via magnetron sputtering prior to the deposition of CNTs. Compared with the as-deposited CNTs, the thermally treated CNTs revealed significantly improved electron emission characteristics, such as the decrease of turn-on electric fields and the increase of emission currents. The observations of Raman spectra confirmed that the improved emission characteristics of the thermally treated CNTs were ascribed to their enhanced crystal qualities. The coating of Al interlayers played a role in enhancing the long-term emission stabilities of the CNTs. The thermally treated CNTs with Al interlayers sustained stable emission currents without any significant degradation even after continuous operation of 20 h. The X-ray photoelectron spectroscopy (XPS) study suggested that the cohesive forces between the CNTs and the underlying substrates were strengthened by the coating of Al interlayers. |
format | Online Article Text |
id | pubmed-4061137 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Springer |
record_format | MEDLINE/PubMed |
spelling | pubmed-40611372014-06-23 Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method Kim, Bu-Jong Kim, Jong-Pil Park, Jin-Seok Nanoscale Res Lett Nano Express The effects of aluminum (Al) interlayer coating and thermal post-treatment on the electron emission characteristics of carbon nanotubes (CNTs) were investigated. These CNTs were deposited on conical-shaped tungsten (W) substrates using an electrophoretic method. The Al interlayers were coated on the W substrates via magnetron sputtering prior to the deposition of CNTs. Compared with the as-deposited CNTs, the thermally treated CNTs revealed significantly improved electron emission characteristics, such as the decrease of turn-on electric fields and the increase of emission currents. The observations of Raman spectra confirmed that the improved emission characteristics of the thermally treated CNTs were ascribed to their enhanced crystal qualities. The coating of Al interlayers played a role in enhancing the long-term emission stabilities of the CNTs. The thermally treated CNTs with Al interlayers sustained stable emission currents without any significant degradation even after continuous operation of 20 h. The X-ray photoelectron spectroscopy (XPS) study suggested that the cohesive forces between the CNTs and the underlying substrates were strengthened by the coating of Al interlayers. Springer 2014-05-13 /pmc/articles/PMC4061137/ /pubmed/24959105 http://dx.doi.org/10.1186/1556-276X-9-236 Text en Copyright © 2014 Kim et al.; licensee Springer. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. |
spellingShingle | Nano Express Kim, Bu-Jong Kim, Jong-Pil Park, Jin-Seok Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method |
title | Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method |
title_full | Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method |
title_fullStr | Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method |
title_full_unstemmed | Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method |
title_short | Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method |
title_sort | effects of al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method |
topic | Nano Express |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061137/ https://www.ncbi.nlm.nih.gov/pubmed/24959105 http://dx.doi.org/10.1186/1556-276X-9-236 |
work_keys_str_mv | AT kimbujong effectsofalinterlayercoatingandthermaltreatmentonelectronemissioncharacteristicsofcarbonnanotubesdepositedbyelectrophoreticmethod AT kimjongpil effectsofalinterlayercoatingandthermaltreatmentonelectronemissioncharacteristicsofcarbonnanotubesdepositedbyelectrophoreticmethod AT parkjinseok effectsofalinterlayercoatingandthermaltreatmentonelectronemissioncharacteristicsofcarbonnanotubesdepositedbyelectrophoreticmethod |