Cargando…
The influence of negative training set size on machine learning-based virtual screening
BACKGROUND: The paper presents a thorough analysis of the influence of the number of negative training examples on the performance of machine learning methods. RESULTS: The impact of this rather neglected aspect of machine learning methods application was examined for sets containing a fixed number...
Autores principales: | Kurczab, Rafał, Smusz, Sabina, Bojarski, Andrzej J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061540/ https://www.ncbi.nlm.nih.gov/pubmed/24976867 http://dx.doi.org/10.1186/1758-2946-6-32 |
Ejemplares similares
-
The influence of training actives/inactives ratio on machine learning performance
por: Kurczab, Rafał, et al.
Publicado: (2013) -
The influence of the negative-positive ratio and screening database size on the performance of machine learning-based virtual screening
por: Kurczab, Rafał, et al.
Publicado: (2017) -
The influence of the inactives subset generation on the performance of machine learning methods
por: Smusz, Sabina, et al.
Publicado: (2013) -
The influence of hashed fingerprints density on the machine learning methods performance
por: Smusz, Sabina, et al.
Publicado: (2013) -
Evaluation of different machine learning methods for ligand-based virtual screening
por: Kurczab, R, et al.
Publicado: (2011)