Cargando…
Comparative Analysis of the Base Compositions of the Pre-mRNA 3′ Cleaved-Off Region and the mRNA 3′ Untranslated Region Relative to the Genomic Base Composition in Animals and Plants
The precursor messenger RNA (pre-mRNA) three-prime cleaved-off region (3′COR) and the mRNA three-prime untranslated region (3′UTR) play critical roles in regulating gene expression. The differences in base composition between these regions and the corresponding genomes are still largely uncharacteri...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062462/ https://www.ncbi.nlm.nih.gov/pubmed/24941005 http://dx.doi.org/10.1371/journal.pone.0099928 |
_version_ | 1782321653899853824 |
---|---|
author | Li, Xiu-Qing |
author_facet | Li, Xiu-Qing |
author_sort | Li, Xiu-Qing |
collection | PubMed |
description | The precursor messenger RNA (pre-mRNA) three-prime cleaved-off region (3′COR) and the mRNA three-prime untranslated region (3′UTR) play critical roles in regulating gene expression. The differences in base composition between these regions and the corresponding genomes are still largely uncharacterized in animals and plants. In this study, the base compositions of non-redundant 3′CORs and 3′UTRs were compared with the corresponding whole genomes of eleven animals, four dicotyledonous plants, and three monocotyledonous (cereal) plants. Among the four bases (A, C, G, and U for adenine, cytosine, guanine, and uracil, respectively), U (which corresponds to T, for thymine, in DNA) was the most frequent, A the second most frequent, G the third most frequent, and C the least frequent in most of the species in both the 3′COR and 3′UTR regions. In comparison with the whole genomes, in both regions the U content was usually the most overrepresented (particularly in the monocotyledonous plants), and the C content was the most underrepresented. The order obtained for the species groups, when ranked from high to low according to the U contents in the 3′COR and 3′UTR was as follows: dicotyledonous plants, monocotyledonous plants, non-mammal animals, and mammals. In contrast, the genomic T content was highest in dicotyledonous plants, lowest in monocotyledonous plants, and intermediate in animals. These results suggest the following: 1) there is a mechanism operating in both animals and plants which is biased toward U and against C in the 3′COR and 3′UTR; 2) the 3′UTR and 3′COR, as functional units, minimized the difference between dicotyledonous and monocotyledonous plants, while the dicotyledonous and monocotyledonous genomes evolved into two extreme groups in terms of base composition. |
format | Online Article Text |
id | pubmed-4062462 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40624622014-06-24 Comparative Analysis of the Base Compositions of the Pre-mRNA 3′ Cleaved-Off Region and the mRNA 3′ Untranslated Region Relative to the Genomic Base Composition in Animals and Plants Li, Xiu-Qing PLoS One Research Article The precursor messenger RNA (pre-mRNA) three-prime cleaved-off region (3′COR) and the mRNA three-prime untranslated region (3′UTR) play critical roles in regulating gene expression. The differences in base composition between these regions and the corresponding genomes are still largely uncharacterized in animals and plants. In this study, the base compositions of non-redundant 3′CORs and 3′UTRs were compared with the corresponding whole genomes of eleven animals, four dicotyledonous plants, and three monocotyledonous (cereal) plants. Among the four bases (A, C, G, and U for adenine, cytosine, guanine, and uracil, respectively), U (which corresponds to T, for thymine, in DNA) was the most frequent, A the second most frequent, G the third most frequent, and C the least frequent in most of the species in both the 3′COR and 3′UTR regions. In comparison with the whole genomes, in both regions the U content was usually the most overrepresented (particularly in the monocotyledonous plants), and the C content was the most underrepresented. The order obtained for the species groups, when ranked from high to low according to the U contents in the 3′COR and 3′UTR was as follows: dicotyledonous plants, monocotyledonous plants, non-mammal animals, and mammals. In contrast, the genomic T content was highest in dicotyledonous plants, lowest in monocotyledonous plants, and intermediate in animals. These results suggest the following: 1) there is a mechanism operating in both animals and plants which is biased toward U and against C in the 3′COR and 3′UTR; 2) the 3′UTR and 3′COR, as functional units, minimized the difference between dicotyledonous and monocotyledonous plants, while the dicotyledonous and monocotyledonous genomes evolved into two extreme groups in terms of base composition. Public Library of Science 2014-06-18 /pmc/articles/PMC4062462/ /pubmed/24941005 http://dx.doi.org/10.1371/journal.pone.0099928 Text en © 2014 Xiu-Qing Li http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Li, Xiu-Qing Comparative Analysis of the Base Compositions of the Pre-mRNA 3′ Cleaved-Off Region and the mRNA 3′ Untranslated Region Relative to the Genomic Base Composition in Animals and Plants |
title | Comparative Analysis of the Base Compositions of the Pre-mRNA 3′ Cleaved-Off Region and the mRNA 3′ Untranslated Region Relative to the Genomic Base Composition in Animals and Plants |
title_full | Comparative Analysis of the Base Compositions of the Pre-mRNA 3′ Cleaved-Off Region and the mRNA 3′ Untranslated Region Relative to the Genomic Base Composition in Animals and Plants |
title_fullStr | Comparative Analysis of the Base Compositions of the Pre-mRNA 3′ Cleaved-Off Region and the mRNA 3′ Untranslated Region Relative to the Genomic Base Composition in Animals and Plants |
title_full_unstemmed | Comparative Analysis of the Base Compositions of the Pre-mRNA 3′ Cleaved-Off Region and the mRNA 3′ Untranslated Region Relative to the Genomic Base Composition in Animals and Plants |
title_short | Comparative Analysis of the Base Compositions of the Pre-mRNA 3′ Cleaved-Off Region and the mRNA 3′ Untranslated Region Relative to the Genomic Base Composition in Animals and Plants |
title_sort | comparative analysis of the base compositions of the pre-mrna 3′ cleaved-off region and the mrna 3′ untranslated region relative to the genomic base composition in animals and plants |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062462/ https://www.ncbi.nlm.nih.gov/pubmed/24941005 http://dx.doi.org/10.1371/journal.pone.0099928 |
work_keys_str_mv | AT lixiuqing comparativeanalysisofthebasecompositionsofthepremrna3cleavedoffregionandthemrna3untranslatedregionrelativetothegenomicbasecompositioninanimalsandplants |