Cargando…
An iterative tomosynthesis reconstruction using total variation combined with non-local means filtering
BACKGROUND: After the release of compressed sensing (CS) theory, reconstruction algorithms from sparse and incomplete data have shown great improvements in diminishing artifacts of missing data. Following this progress, both local and non-local regularization induced iterative reconstructions have b...
Autores principales: | Ertas, Metin, Yildirim, Isa, Kamasak, Mustafa, Akan, Aydin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062520/ https://www.ncbi.nlm.nih.gov/pubmed/24886602 http://dx.doi.org/10.1186/1475-925X-13-65 |
Ejemplares similares
-
Digital breast tomosynthesis image reconstruction using 2D and 3D total variation minimization
por: Ertas, Metin, et al.
Publicado: (2013) -
An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System
por: Seyyedi, Saeed, et al.
Publicado: (2013) -
Use of a Total Variation Minimization Iterative Reconstruction Algorithm to Evaluate Reduced Projections during Digital Breast Tomosynthesis
por: Gomi, Tsutomu, et al.
Publicado: (2018) -
A Model-Based Optimization Framework for Iterative Digital Breast Tomosynthesis Image Reconstruction
por: Loli Piccolomini, Elena, et al.
Publicado: (2021) -
GPU acceleration of a model-based iterative method for Digital Breast Tomosynthesis
por: Cavicchioli, R., et al.
Publicado: (2020)