Cargando…
Molecular Detection, Quantification, and Toxigenicity Profiling of Aeromonas spp. in Source- and Drinking-Water
Aeromonas is ubiquitous in aquatic environments and has been associated with a number of extra-gastrointestinal and gastrointestinal illnesses. This warrants monitoring of raw and processed water sources for pathogenic and toxigenic species of this human pathogen. In this study, a total of 17 differ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Open
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062929/ https://www.ncbi.nlm.nih.gov/pubmed/24949108 http://dx.doi.org/10.2174/1874285801408010032 |
_version_ | 1782321712887496704 |
---|---|
author | Robertson, Boakai K Harden, Carol Selvaraju, Suresh B Pradhan, Suman Yadav, Jagjit S |
author_facet | Robertson, Boakai K Harden, Carol Selvaraju, Suresh B Pradhan, Suman Yadav, Jagjit S |
author_sort | Robertson, Boakai K |
collection | PubMed |
description | Aeromonas is ubiquitous in aquatic environments and has been associated with a number of extra-gastrointestinal and gastrointestinal illnesses. This warrants monitoring of raw and processed water sources for pathogenic and toxigenic species of this human pathogen. In this study, a total of 17 different water samples [9 raw and 8 treated samples including 4 basin water (partial sand filtration) and 4 finished water samples] were screened for Aeromonas using selective culturing and a genus-specific real-time quantitative PCR assay. The selective culturing yielded Aeromonas counts ranging 0 – 2 x 10(3)CFU/ml and 15 Aeromonas isolates from both raw and treated water samples. The qPCR analysis indicated presence of a considerable nonculturable population (3.4 x 10(1) – 2.4 x 10(4) cells/ml) of Aeromonas in drinking water samples. Virulence potential of the Aeromonas isolates was assessed by multiplex/singleplex PCR-based profiling of the hemolysin and enterotoxin genes viz cytotoxic heat-labile enterotoxin (act), heat-labile cytotonic enterotoxin (alt), heat-stable cytotonic enterotoxin (ast), and aerolysin (aerA) genes. The water isolates yielded five distinct toxigenicity profiles, viz. act, alt, act+alt, aerA+alt, and aerA+alt+act. The alt gene showed the highest frequency of occurrence (40%), followed by the aerA (20%), act (13%), and ast (0%) genes. Taken together, the study demonstrated the occurrence of a considerable population of nonculturable Aeromonads in water and prevalence of toxigenic Aeromonas spp. potentially pathogenic to humans. This emphasizes the importance of routine monitoring of both source and drinking water for this human pathogen and role of the developed molecular approaches in improving the Aeromonas monitoring scheme for water. |
format | Online Article Text |
id | pubmed-4062929 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Bentham Open |
record_format | MEDLINE/PubMed |
spelling | pubmed-40629292014-06-19 Molecular Detection, Quantification, and Toxigenicity Profiling of Aeromonas spp. in Source- and Drinking-Water Robertson, Boakai K Harden, Carol Selvaraju, Suresh B Pradhan, Suman Yadav, Jagjit S Open Microbiol J Article Aeromonas is ubiquitous in aquatic environments and has been associated with a number of extra-gastrointestinal and gastrointestinal illnesses. This warrants monitoring of raw and processed water sources for pathogenic and toxigenic species of this human pathogen. In this study, a total of 17 different water samples [9 raw and 8 treated samples including 4 basin water (partial sand filtration) and 4 finished water samples] were screened for Aeromonas using selective culturing and a genus-specific real-time quantitative PCR assay. The selective culturing yielded Aeromonas counts ranging 0 – 2 x 10(3)CFU/ml and 15 Aeromonas isolates from both raw and treated water samples. The qPCR analysis indicated presence of a considerable nonculturable population (3.4 x 10(1) – 2.4 x 10(4) cells/ml) of Aeromonas in drinking water samples. Virulence potential of the Aeromonas isolates was assessed by multiplex/singleplex PCR-based profiling of the hemolysin and enterotoxin genes viz cytotoxic heat-labile enterotoxin (act), heat-labile cytotonic enterotoxin (alt), heat-stable cytotonic enterotoxin (ast), and aerolysin (aerA) genes. The water isolates yielded five distinct toxigenicity profiles, viz. act, alt, act+alt, aerA+alt, and aerA+alt+act. The alt gene showed the highest frequency of occurrence (40%), followed by the aerA (20%), act (13%), and ast (0%) genes. Taken together, the study demonstrated the occurrence of a considerable population of nonculturable Aeromonads in water and prevalence of toxigenic Aeromonas spp. potentially pathogenic to humans. This emphasizes the importance of routine monitoring of both source and drinking water for this human pathogen and role of the developed molecular approaches in improving the Aeromonas monitoring scheme for water. Bentham Open 2014-05-30 /pmc/articles/PMC4062929/ /pubmed/24949108 http://dx.doi.org/10.2174/1874285801408010032 Text en © Robertson et al.; Licensee Bentham Open. http://creativecommons.org/licenses/by-nc/3.0/ This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. |
spellingShingle | Article Robertson, Boakai K Harden, Carol Selvaraju, Suresh B Pradhan, Suman Yadav, Jagjit S Molecular Detection, Quantification, and Toxigenicity Profiling of Aeromonas spp. in Source- and Drinking-Water |
title | Molecular Detection, Quantification, and Toxigenicity Profiling of Aeromonas spp. in Source- and Drinking-Water |
title_full | Molecular Detection, Quantification, and Toxigenicity Profiling of Aeromonas spp. in Source- and Drinking-Water |
title_fullStr | Molecular Detection, Quantification, and Toxigenicity Profiling of Aeromonas spp. in Source- and Drinking-Water |
title_full_unstemmed | Molecular Detection, Quantification, and Toxigenicity Profiling of Aeromonas spp. in Source- and Drinking-Water |
title_short | Molecular Detection, Quantification, and Toxigenicity Profiling of Aeromonas spp. in Source- and Drinking-Water |
title_sort | molecular detection, quantification, and toxigenicity profiling of aeromonas spp. in source- and drinking-water |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062929/ https://www.ncbi.nlm.nih.gov/pubmed/24949108 http://dx.doi.org/10.2174/1874285801408010032 |
work_keys_str_mv | AT robertsonboakaik moleculardetectionquantificationandtoxigenicityprofilingofaeromonassppinsourceanddrinkingwater AT hardencarol moleculardetectionquantificationandtoxigenicityprofilingofaeromonassppinsourceanddrinkingwater AT selvarajusureshb moleculardetectionquantificationandtoxigenicityprofilingofaeromonassppinsourceanddrinkingwater AT pradhansuman moleculardetectionquantificationandtoxigenicityprofilingofaeromonassppinsourceanddrinkingwater AT yadavjagjits moleculardetectionquantificationandtoxigenicityprofilingofaeromonassppinsourceanddrinkingwater |