Cargando…

Identifying the Elusive Sites of Tyrosyl Radicals in Cytochrome c Peroxidase: Implications for Oxidation of Substrates Bound at a Site Remote from the Heme

[Image: see text] The location of the Trp radical and the catalytic function of the [Fe(IV)=O Trp(191)(•+)] intermediate in cytochrome c peroxidase (CcP) are well-established; however, the unambiguous identification of the site(s) for the formation of tyrosyl radical(s) and their possible biological...

Descripción completa

Detalles Bibliográficos
Autores principales: Miner, Kyle D., Pfister, Thomas D., Hosseinzadeh, Parisa, Karaduman, Nadime, Donald, Lynda J., Loewen, Peter C., Lu, Yi, Ivancich, Anabella
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063442/
https://www.ncbi.nlm.nih.gov/pubmed/24901481
http://dx.doi.org/10.1021/bi500353p
_version_ 1782321791908184064
author Miner, Kyle D.
Pfister, Thomas D.
Hosseinzadeh, Parisa
Karaduman, Nadime
Donald, Lynda J.
Loewen, Peter C.
Lu, Yi
Ivancich, Anabella
author_facet Miner, Kyle D.
Pfister, Thomas D.
Hosseinzadeh, Parisa
Karaduman, Nadime
Donald, Lynda J.
Loewen, Peter C.
Lu, Yi
Ivancich, Anabella
author_sort Miner, Kyle D.
collection PubMed
description [Image: see text] The location of the Trp radical and the catalytic function of the [Fe(IV)=O Trp(191)(•+)] intermediate in cytochrome c peroxidase (CcP) are well-established; however, the unambiguous identification of the site(s) for the formation of tyrosyl radical(s) and their possible biological roles remain elusive. We have now performed a systematic investigation of the location and reactivity of the Tyr radical(s) using multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy combined with multiple-site Trp/Tyr mutations in CcP. Two tyrosines, Tyr71 and Tyr236, were identified as those contributing primarily to the EPR spectrum of the tyrosyl radical, recorded at 9 and 285 GHz. The EPR characterization also showed that the heme distal-side Trp51 is involved in the intramolecular electron transfer between Tyr71 and the heme and that formation of Tyr(71)(•) and Tyr(236)(•) is independent of the [Fe(IV)=O Trp(191)(•+)] intermediate. Tyr71 is located in an optimal position to mediate the oxidation of substrates binding at a site, more than 20 Å from the heme, which has been reported recently in the crystal structures of CcP with bound guaicol and phenol [Murphy, E. J., et al. (2012) FEBS J. 279, 1632–1639]. The possibility of discriminating the radical intermediates by their EPR spectra allowed us to identify Tyr(71)(•) as the reactive species with the guaiacol substrate. Our assignment of the surface-exposed Tyr236 as the other radical site agrees well with previous studies based on MNP labeling and protein cross-linking [Tsaprailis, G., and English, A. M. (2003) JBIC, J. Biol. Inorg. Chem. 8, 248–255] and on its covalent modification upon reaction of W191G CcP with 2-aminotriazole [Musah, R. A., and Goodin, D. B. (1997) Biochemistry 36, 11665–11674]. Accordingly, while Tyr71 acts as a true reactive intermediate for the oxidation of certain small substrates that bind at a site remote from the heme, the surface-exposed Tyr236 would be more likely related to oxidative stress signaling, as previously proposed. Our findings reinforce the view that CcP is the monofunctional peroxidase that most closely resembles its ancestor enzymes, the catalase-peroxidases, in terms of the higher complexity of the peroxidase reaction [Colin, J., et al. (2009) J. Am. Chem. Soc. 131, 8557–8563]. The strategy used to identify the elusive Tyr radical sites in CcP may be applied to other heme enzymes containing a large number of Tyr and Trp residues and for which Tyr (or Trp) radicals have been proposed to be involved in their peroxidase or peroxidase-like reaction.
format Online
Article
Text
id pubmed-4063442
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-40634422015-06-05 Identifying the Elusive Sites of Tyrosyl Radicals in Cytochrome c Peroxidase: Implications for Oxidation of Substrates Bound at a Site Remote from the Heme Miner, Kyle D. Pfister, Thomas D. Hosseinzadeh, Parisa Karaduman, Nadime Donald, Lynda J. Loewen, Peter C. Lu, Yi Ivancich, Anabella Biochemistry [Image: see text] The location of the Trp radical and the catalytic function of the [Fe(IV)=O Trp(191)(•+)] intermediate in cytochrome c peroxidase (CcP) are well-established; however, the unambiguous identification of the site(s) for the formation of tyrosyl radical(s) and their possible biological roles remain elusive. We have now performed a systematic investigation of the location and reactivity of the Tyr radical(s) using multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy combined with multiple-site Trp/Tyr mutations in CcP. Two tyrosines, Tyr71 and Tyr236, were identified as those contributing primarily to the EPR spectrum of the tyrosyl radical, recorded at 9 and 285 GHz. The EPR characterization also showed that the heme distal-side Trp51 is involved in the intramolecular electron transfer between Tyr71 and the heme and that formation of Tyr(71)(•) and Tyr(236)(•) is independent of the [Fe(IV)=O Trp(191)(•+)] intermediate. Tyr71 is located in an optimal position to mediate the oxidation of substrates binding at a site, more than 20 Å from the heme, which has been reported recently in the crystal structures of CcP with bound guaicol and phenol [Murphy, E. J., et al. (2012) FEBS J. 279, 1632–1639]. The possibility of discriminating the radical intermediates by their EPR spectra allowed us to identify Tyr(71)(•) as the reactive species with the guaiacol substrate. Our assignment of the surface-exposed Tyr236 as the other radical site agrees well with previous studies based on MNP labeling and protein cross-linking [Tsaprailis, G., and English, A. M. (2003) JBIC, J. Biol. Inorg. Chem. 8, 248–255] and on its covalent modification upon reaction of W191G CcP with 2-aminotriazole [Musah, R. A., and Goodin, D. B. (1997) Biochemistry 36, 11665–11674]. Accordingly, while Tyr71 acts as a true reactive intermediate for the oxidation of certain small substrates that bind at a site remote from the heme, the surface-exposed Tyr236 would be more likely related to oxidative stress signaling, as previously proposed. Our findings reinforce the view that CcP is the monofunctional peroxidase that most closely resembles its ancestor enzymes, the catalase-peroxidases, in terms of the higher complexity of the peroxidase reaction [Colin, J., et al. (2009) J. Am. Chem. Soc. 131, 8557–8563]. The strategy used to identify the elusive Tyr radical sites in CcP may be applied to other heme enzymes containing a large number of Tyr and Trp residues and for which Tyr (or Trp) radicals have been proposed to be involved in their peroxidase or peroxidase-like reaction. American Chemical Society 2014-06-05 2014-06-17 /pmc/articles/PMC4063442/ /pubmed/24901481 http://dx.doi.org/10.1021/bi500353p Text en Copyright © 2014 American Chemical Society Open Access on 06/05/2015
spellingShingle Miner, Kyle D.
Pfister, Thomas D.
Hosseinzadeh, Parisa
Karaduman, Nadime
Donald, Lynda J.
Loewen, Peter C.
Lu, Yi
Ivancich, Anabella
Identifying the Elusive Sites of Tyrosyl Radicals in Cytochrome c Peroxidase: Implications for Oxidation of Substrates Bound at a Site Remote from the Heme
title Identifying the Elusive Sites of Tyrosyl Radicals in Cytochrome c Peroxidase: Implications for Oxidation of Substrates Bound at a Site Remote from the Heme
title_full Identifying the Elusive Sites of Tyrosyl Radicals in Cytochrome c Peroxidase: Implications for Oxidation of Substrates Bound at a Site Remote from the Heme
title_fullStr Identifying the Elusive Sites of Tyrosyl Radicals in Cytochrome c Peroxidase: Implications for Oxidation of Substrates Bound at a Site Remote from the Heme
title_full_unstemmed Identifying the Elusive Sites of Tyrosyl Radicals in Cytochrome c Peroxidase: Implications for Oxidation of Substrates Bound at a Site Remote from the Heme
title_short Identifying the Elusive Sites of Tyrosyl Radicals in Cytochrome c Peroxidase: Implications for Oxidation of Substrates Bound at a Site Remote from the Heme
title_sort identifying the elusive sites of tyrosyl radicals in cytochrome c peroxidase: implications for oxidation of substrates bound at a site remote from the heme
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063442/
https://www.ncbi.nlm.nih.gov/pubmed/24901481
http://dx.doi.org/10.1021/bi500353p
work_keys_str_mv AT minerkyled identifyingtheelusivesitesoftyrosylradicalsincytochromecperoxidaseimplicationsforoxidationofsubstratesboundatasiteremotefromtheheme
AT pfisterthomasd identifyingtheelusivesitesoftyrosylradicalsincytochromecperoxidaseimplicationsforoxidationofsubstratesboundatasiteremotefromtheheme
AT hosseinzadehparisa identifyingtheelusivesitesoftyrosylradicalsincytochromecperoxidaseimplicationsforoxidationofsubstratesboundatasiteremotefromtheheme
AT karadumannadime identifyingtheelusivesitesoftyrosylradicalsincytochromecperoxidaseimplicationsforoxidationofsubstratesboundatasiteremotefromtheheme
AT donaldlyndaj identifyingtheelusivesitesoftyrosylradicalsincytochromecperoxidaseimplicationsforoxidationofsubstratesboundatasiteremotefromtheheme
AT loewenpeterc identifyingtheelusivesitesoftyrosylradicalsincytochromecperoxidaseimplicationsforoxidationofsubstratesboundatasiteremotefromtheheme
AT luyi identifyingtheelusivesitesoftyrosylradicalsincytochromecperoxidaseimplicationsforoxidationofsubstratesboundatasiteremotefromtheheme
AT ivancichanabella identifyingtheelusivesitesoftyrosylradicalsincytochromecperoxidaseimplicationsforoxidationofsubstratesboundatasiteremotefromtheheme