Cargando…

A hidden Markov model to identify and adjust for selection bias: an example involving mixed migration strategies

An important assumption in observational studies is that sampled individuals are representative of some larger study population. Yet, this assumption is often unrealistic. Notable examples include online public-opinion polls, publication biases associated with statistically significant results, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Fieberg, John R, Conn, Paul B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063483/
https://www.ncbi.nlm.nih.gov/pubmed/24963384
http://dx.doi.org/10.1002/ece3.1066
_version_ 1782321799640383488
author Fieberg, John R
Conn, Paul B
author_facet Fieberg, John R
Conn, Paul B
author_sort Fieberg, John R
collection PubMed
description An important assumption in observational studies is that sampled individuals are representative of some larger study population. Yet, this assumption is often unrealistic. Notable examples include online public-opinion polls, publication biases associated with statistically significant results, and in ecology, telemetry studies with significant habitat-induced probabilities of missed locations. This problem can be overcome by modeling selection probabilities simultaneously with other predictor–response relationships or by weighting observations by inverse selection probabilities. We illustrate the problem and a solution when modeling mixed migration strategies of northern white-tailed deer (Odocoileus virginianus). Captures occur on winter yards where deer migrate in response to changing environmental conditions. Yet, not all deer migrate in all years, and captures during mild years are more likely to target deer that migrate every year (i.e., obligate migrators). Characterizing deer as conditional or obligate migrators is also challenging unless deer are observed for many years and under a variety of winter conditions. We developed a hidden Markov model where the probability of capture depends on each individual's migration strategy (conditional versus obligate migrator), a partially latent variable that depends on winter severity in the year of capture. In a 15-year study, involving 168 white-tailed deer, the estimated probability of migrating for conditional migrators increased nonlinearly with an index of winter severity. We estimated a higher proportion of obligates in the study cohort than in the population, except during a span of 3 years surrounding back-to-back severe winters. These results support the hypothesis that selection biases occur as a result of capturing deer on winter yards, with the magnitude of bias depending on the severity of winter weather. Hidden Markov models offer an attractive framework for addressing selection biases due to their ability to incorporate latent variables and model direct and indirect links between state variables and capture probabilities.
format Online
Article
Text
id pubmed-4063483
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BlackWell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-40634832014-06-24 A hidden Markov model to identify and adjust for selection bias: an example involving mixed migration strategies Fieberg, John R Conn, Paul B Ecol Evol Original Research An important assumption in observational studies is that sampled individuals are representative of some larger study population. Yet, this assumption is often unrealistic. Notable examples include online public-opinion polls, publication biases associated with statistically significant results, and in ecology, telemetry studies with significant habitat-induced probabilities of missed locations. This problem can be overcome by modeling selection probabilities simultaneously with other predictor–response relationships or by weighting observations by inverse selection probabilities. We illustrate the problem and a solution when modeling mixed migration strategies of northern white-tailed deer (Odocoileus virginianus). Captures occur on winter yards where deer migrate in response to changing environmental conditions. Yet, not all deer migrate in all years, and captures during mild years are more likely to target deer that migrate every year (i.e., obligate migrators). Characterizing deer as conditional or obligate migrators is also challenging unless deer are observed for many years and under a variety of winter conditions. We developed a hidden Markov model where the probability of capture depends on each individual's migration strategy (conditional versus obligate migrator), a partially latent variable that depends on winter severity in the year of capture. In a 15-year study, involving 168 white-tailed deer, the estimated probability of migrating for conditional migrators increased nonlinearly with an index of winter severity. We estimated a higher proportion of obligates in the study cohort than in the population, except during a span of 3 years surrounding back-to-back severe winters. These results support the hypothesis that selection biases occur as a result of capturing deer on winter yards, with the magnitude of bias depending on the severity of winter weather. Hidden Markov models offer an attractive framework for addressing selection biases due to their ability to incorporate latent variables and model direct and indirect links between state variables and capture probabilities. BlackWell Publishing Ltd 2014-05 2014-04-19 /pmc/articles/PMC4063483/ /pubmed/24963384 http://dx.doi.org/10.1002/ece3.1066 Text en Published 2014. This article is a U.S. Government work and is in the public domain in the USA. http://creativecommons.org/licenses/by/3.0/ This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Fieberg, John R
Conn, Paul B
A hidden Markov model to identify and adjust for selection bias: an example involving mixed migration strategies
title A hidden Markov model to identify and adjust for selection bias: an example involving mixed migration strategies
title_full A hidden Markov model to identify and adjust for selection bias: an example involving mixed migration strategies
title_fullStr A hidden Markov model to identify and adjust for selection bias: an example involving mixed migration strategies
title_full_unstemmed A hidden Markov model to identify and adjust for selection bias: an example involving mixed migration strategies
title_short A hidden Markov model to identify and adjust for selection bias: an example involving mixed migration strategies
title_sort hidden markov model to identify and adjust for selection bias: an example involving mixed migration strategies
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063483/
https://www.ncbi.nlm.nih.gov/pubmed/24963384
http://dx.doi.org/10.1002/ece3.1066
work_keys_str_mv AT fiebergjohnr ahiddenmarkovmodeltoidentifyandadjustforselectionbiasanexampleinvolvingmixedmigrationstrategies
AT connpaulb ahiddenmarkovmodeltoidentifyandadjustforselectionbiasanexampleinvolvingmixedmigrationstrategies
AT fiebergjohnr hiddenmarkovmodeltoidentifyandadjustforselectionbiasanexampleinvolvingmixedmigrationstrategies
AT connpaulb hiddenmarkovmodeltoidentifyandadjustforselectionbiasanexampleinvolvingmixedmigrationstrategies