Cargando…

A New Microfluidics-Based Droplet Dispenser for ICPMS

[Image: see text] In this work, a novel droplet microfluidic sample introduction system for inductively coupled plasma mass spectrometry (ICPMS) is proposed and characterized. The cheap and disposable microfluidic chip generates droplets of an aqueous sample in a stream of perfluorohexane (PFH), whi...

Descripción completa

Detalles Bibliográficos
Autores principales: Verboket, Pascal E., Borovinskaya, Olga, Meyer, Nicole, Günther, Detlef, Dittrich, Petra S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063494/
https://www.ncbi.nlm.nih.gov/pubmed/24805360
http://dx.doi.org/10.1021/ac501149a
Descripción
Sumario:[Image: see text] In this work, a novel droplet microfluidic sample introduction system for inductively coupled plasma mass spectrometry (ICPMS) is proposed and characterized. The cheap and disposable microfluidic chip generates droplets of an aqueous sample in a stream of perfluorohexane (PFH), which is also used to eject them as a liquid jet. The aqueous droplets remain intact during the ejection and can be transported into the ICP with >50% efficiency. The transport is realized via a custom-built system, which includes a membrane desolvator necessary for the PFH vapor removal. The introduction system presented here can generate highly monodisperse droplets in the size range of 40–60 μm at frequencies from 90 to 300 Hz. These droplets produced very stable signals with a relative standard deviation (RSD) comparable to the one achieved with a commercial droplet dispenser. Using the current system, samples with a total volume of <1 μL can be analyzed. Moreover, the capabilities of the setup for introduction and quantitative elemental analysis of single cells were described using a test system of bovine red blood cells. In the future, other modules of the modern microfludics can be integrated in the chip, such as on-chip sample pretreatment or parallel introduction of different samples.