Cargando…
Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity
Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063685/ https://www.ncbi.nlm.nih.gov/pubmed/24945157 http://dx.doi.org/10.1371/journal.pgen.1004385 |
_version_ | 1782321836365709312 |
---|---|
author | Kukat, Alexandra Dogan, Sukru Anil Edgar, Daniel Mourier, Arnaud Jacoby, Christoph Maiti, Priyanka Mauer, Jan Becker, Christina Senft, Katharina Wibom, Rolf Kudin, Alexei P. Hultenby, Kjell Flögel, Ulrich Rosenkranz, Stephan Ricquier, Daniel Kunz, Wolfram S. Trifunovic, Aleksandra |
author_facet | Kukat, Alexandra Dogan, Sukru Anil Edgar, Daniel Mourier, Arnaud Jacoby, Christoph Maiti, Priyanka Mauer, Jan Becker, Christina Senft, Katharina Wibom, Rolf Kudin, Alexei P. Hultenby, Kjell Flögel, Ulrich Rosenkranz, Stephan Ricquier, Daniel Kunz, Wolfram S. Trifunovic, Aleksandra |
author_sort | Kukat, Alexandra |
collection | PubMed |
description | Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an active compensatory mechanism such as a mild increase in proton leak. Uncoupling protein 2 (UCP2) was proposed to play such a role in many physiological situations. However, we show that upregulation of UCP2 in mtDNA mutator mice is not associated with altered proton leak kinetics or ROS production, challenging the current view on the role of UCP2 in energy metabolism. Instead, our results argue that high UCP2 levels allow better utilization of fatty acid oxidation resulting in a beneficial effect on mitochondrial function in heart, postponing systemic lactic acidosis and resulting in longer lifespan in these mice. This study proposes a novel mechanism for an adaptive response to mitochondrial cardiomyopathy that links changes in metabolism to amelioration of respiratory chain deficiency and longer lifespan. |
format | Online Article Text |
id | pubmed-4063685 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40636852014-06-25 Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity Kukat, Alexandra Dogan, Sukru Anil Edgar, Daniel Mourier, Arnaud Jacoby, Christoph Maiti, Priyanka Mauer, Jan Becker, Christina Senft, Katharina Wibom, Rolf Kudin, Alexei P. Hultenby, Kjell Flögel, Ulrich Rosenkranz, Stephan Ricquier, Daniel Kunz, Wolfram S. Trifunovic, Aleksandra PLoS Genet Research Article Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an active compensatory mechanism such as a mild increase in proton leak. Uncoupling protein 2 (UCP2) was proposed to play such a role in many physiological situations. However, we show that upregulation of UCP2 in mtDNA mutator mice is not associated with altered proton leak kinetics or ROS production, challenging the current view on the role of UCP2 in energy metabolism. Instead, our results argue that high UCP2 levels allow better utilization of fatty acid oxidation resulting in a beneficial effect on mitochondrial function in heart, postponing systemic lactic acidosis and resulting in longer lifespan in these mice. This study proposes a novel mechanism for an adaptive response to mitochondrial cardiomyopathy that links changes in metabolism to amelioration of respiratory chain deficiency and longer lifespan. Public Library of Science 2014-06-19 /pmc/articles/PMC4063685/ /pubmed/24945157 http://dx.doi.org/10.1371/journal.pgen.1004385 Text en © 2014 Kukat et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kukat, Alexandra Dogan, Sukru Anil Edgar, Daniel Mourier, Arnaud Jacoby, Christoph Maiti, Priyanka Mauer, Jan Becker, Christina Senft, Katharina Wibom, Rolf Kudin, Alexei P. Hultenby, Kjell Flögel, Ulrich Rosenkranz, Stephan Ricquier, Daniel Kunz, Wolfram S. Trifunovic, Aleksandra Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity |
title | Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity |
title_full | Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity |
title_fullStr | Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity |
title_full_unstemmed | Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity |
title_short | Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity |
title_sort | loss of ucp2 attenuates mitochondrial dysfunction without altering ros production and uncoupling activity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063685/ https://www.ncbi.nlm.nih.gov/pubmed/24945157 http://dx.doi.org/10.1371/journal.pgen.1004385 |
work_keys_str_mv | AT kukatalexandra lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity AT dogansukruanil lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity AT edgardaniel lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity AT mourierarnaud lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity AT jacobychristoph lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity AT maitipriyanka lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity AT mauerjan lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity AT beckerchristina lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity AT senftkatharina lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity AT wibomrolf lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity AT kudinalexeip lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity AT hultenbykjell lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity AT flogelulrich lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity AT rosenkranzstephan lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity AT ricquierdaniel lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity AT kunzwolframs lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity AT trifunovicaleksandra lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity |