Cargando…

Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity

Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an...

Descripción completa

Detalles Bibliográficos
Autores principales: Kukat, Alexandra, Dogan, Sukru Anil, Edgar, Daniel, Mourier, Arnaud, Jacoby, Christoph, Maiti, Priyanka, Mauer, Jan, Becker, Christina, Senft, Katharina, Wibom, Rolf, Kudin, Alexei P., Hultenby, Kjell, Flögel, Ulrich, Rosenkranz, Stephan, Ricquier, Daniel, Kunz, Wolfram S., Trifunovic, Aleksandra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063685/
https://www.ncbi.nlm.nih.gov/pubmed/24945157
http://dx.doi.org/10.1371/journal.pgen.1004385
_version_ 1782321836365709312
author Kukat, Alexandra
Dogan, Sukru Anil
Edgar, Daniel
Mourier, Arnaud
Jacoby, Christoph
Maiti, Priyanka
Mauer, Jan
Becker, Christina
Senft, Katharina
Wibom, Rolf
Kudin, Alexei P.
Hultenby, Kjell
Flögel, Ulrich
Rosenkranz, Stephan
Ricquier, Daniel
Kunz, Wolfram S.
Trifunovic, Aleksandra
author_facet Kukat, Alexandra
Dogan, Sukru Anil
Edgar, Daniel
Mourier, Arnaud
Jacoby, Christoph
Maiti, Priyanka
Mauer, Jan
Becker, Christina
Senft, Katharina
Wibom, Rolf
Kudin, Alexei P.
Hultenby, Kjell
Flögel, Ulrich
Rosenkranz, Stephan
Ricquier, Daniel
Kunz, Wolfram S.
Trifunovic, Aleksandra
author_sort Kukat, Alexandra
collection PubMed
description Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an active compensatory mechanism such as a mild increase in proton leak. Uncoupling protein 2 (UCP2) was proposed to play such a role in many physiological situations. However, we show that upregulation of UCP2 in mtDNA mutator mice is not associated with altered proton leak kinetics or ROS production, challenging the current view on the role of UCP2 in energy metabolism. Instead, our results argue that high UCP2 levels allow better utilization of fatty acid oxidation resulting in a beneficial effect on mitochondrial function in heart, postponing systemic lactic acidosis and resulting in longer lifespan in these mice. This study proposes a novel mechanism for an adaptive response to mitochondrial cardiomyopathy that links changes in metabolism to amelioration of respiratory chain deficiency and longer lifespan.
format Online
Article
Text
id pubmed-4063685
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-40636852014-06-25 Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity Kukat, Alexandra Dogan, Sukru Anil Edgar, Daniel Mourier, Arnaud Jacoby, Christoph Maiti, Priyanka Mauer, Jan Becker, Christina Senft, Katharina Wibom, Rolf Kudin, Alexei P. Hultenby, Kjell Flögel, Ulrich Rosenkranz, Stephan Ricquier, Daniel Kunz, Wolfram S. Trifunovic, Aleksandra PLoS Genet Research Article Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an active compensatory mechanism such as a mild increase in proton leak. Uncoupling protein 2 (UCP2) was proposed to play such a role in many physiological situations. However, we show that upregulation of UCP2 in mtDNA mutator mice is not associated with altered proton leak kinetics or ROS production, challenging the current view on the role of UCP2 in energy metabolism. Instead, our results argue that high UCP2 levels allow better utilization of fatty acid oxidation resulting in a beneficial effect on mitochondrial function in heart, postponing systemic lactic acidosis and resulting in longer lifespan in these mice. This study proposes a novel mechanism for an adaptive response to mitochondrial cardiomyopathy that links changes in metabolism to amelioration of respiratory chain deficiency and longer lifespan. Public Library of Science 2014-06-19 /pmc/articles/PMC4063685/ /pubmed/24945157 http://dx.doi.org/10.1371/journal.pgen.1004385 Text en © 2014 Kukat et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Kukat, Alexandra
Dogan, Sukru Anil
Edgar, Daniel
Mourier, Arnaud
Jacoby, Christoph
Maiti, Priyanka
Mauer, Jan
Becker, Christina
Senft, Katharina
Wibom, Rolf
Kudin, Alexei P.
Hultenby, Kjell
Flögel, Ulrich
Rosenkranz, Stephan
Ricquier, Daniel
Kunz, Wolfram S.
Trifunovic, Aleksandra
Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity
title Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity
title_full Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity
title_fullStr Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity
title_full_unstemmed Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity
title_short Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity
title_sort loss of ucp2 attenuates mitochondrial dysfunction without altering ros production and uncoupling activity
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063685/
https://www.ncbi.nlm.nih.gov/pubmed/24945157
http://dx.doi.org/10.1371/journal.pgen.1004385
work_keys_str_mv AT kukatalexandra lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity
AT dogansukruanil lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity
AT edgardaniel lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity
AT mourierarnaud lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity
AT jacobychristoph lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity
AT maitipriyanka lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity
AT mauerjan lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity
AT beckerchristina lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity
AT senftkatharina lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity
AT wibomrolf lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity
AT kudinalexeip lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity
AT hultenbykjell lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity
AT flogelulrich lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity
AT rosenkranzstephan lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity
AT ricquierdaniel lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity
AT kunzwolframs lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity
AT trifunovicaleksandra lossofucp2attenuatesmitochondrialdysfunctionwithoutalteringrosproductionanduncouplingactivity