Cargando…

Clinical Predictive Models for Chemotherapy-Induced Febrile Neutropenia in Breast Cancer Patients: A Validation Study

BACKGROUND: Predictive models for febrile neutropenia (FN) would be informative for physicians in clinical decision making. This study aims to validate a predictive model (Jenkin’s model) that comprises pretreatment hematological parameters in early-stage breast cancer patients. PATIENTS AND METHODS...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Kai, Zhang, Xiaolan, Deng, Heran, Zhu, Liling, Su, Fengxi, Jia, Weijuan, Deng, Xiaogeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063732/
https://www.ncbi.nlm.nih.gov/pubmed/24945817
http://dx.doi.org/10.1371/journal.pone.0096413
Descripción
Sumario:BACKGROUND: Predictive models for febrile neutropenia (FN) would be informative for physicians in clinical decision making. This study aims to validate a predictive model (Jenkin’s model) that comprises pretreatment hematological parameters in early-stage breast cancer patients. PATIENTS AND METHODS: A total of 428 breast cancer patients who received neoadjuvant/adjuvant chemotherapy without any prophylactic use of colony-stimulating factor were included. Pretreatment absolute neutrophil counts (ANC) and absolute lymphocyte counts (ALC) were used by the Jenkin’s model to assess the risk of FN. In addition, we modified the threshold of Jenkin’s model and generated Model-A and B. We also developed Model-C by incorporating the absolute monocyte count (AMC) as a predictor into Model-A. The rates of FN in the 1st chemotherapy cycle were calculated. A valid model should be able to significantly identify high-risk subgroup of patients with FN rate >20%. RESULTS: Jenkin’s model (Predicted as high-risk when ANC≦3.1*10∧9/L;ALC≦1.5*10∧9/L) did not identify any subgroups with significantly high risk (>20%) of FN in our population, even if we used different thresholds in Model-A(ANC≦4.4*10∧9/L;ALC≦2.1*10∧9/L) or B(ANC≦3.8*10∧9/L;ALC≦1.8*10∧9/L). However, with AMC added as an additional predictor, Model-C(ANC≦4.4*10∧9/L;ALC≦2.1*10∧9/L; AMC≦0.28*10∧9/L) identified a subgroup of patients with a significantly high risk of FN (23.1%). CONCLUSIONS: In our population, Jenkin’s model, cannot accurately identify patients with a significant risk of FN. The threshold should be changed and the AMC should be incorporated as a predictor, to have excellent predictive ability.