Cargando…

Elimination of Young Erythrocytes from Blood Circulation and Altered Erythropoietic Patterns during Paraquat Induced Anemic Phase in Mice

Paraquat a widely used herbicide causes a variety of toxic effects on humans and animals. The present study is focused on the interaction of paraquat with the mouse erythroid system. Administration of paraquat (10 mg/kg body weight i.p. on alternate days in C57Bl/6 mice) induced a significant fall i...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhardwaj, Nitin, Saxena, Rajiv K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063733/
https://www.ncbi.nlm.nih.gov/pubmed/24945144
http://dx.doi.org/10.1371/journal.pone.0099364
Descripción
Sumario:Paraquat a widely used herbicide causes a variety of toxic effects on humans and animals. The present study is focused on the interaction of paraquat with the mouse erythroid system. Administration of paraquat (10 mg/kg body weight i.p. on alternate days in C57Bl/6 mice) induced a significant fall in blood erythrocyte count on 7, 14, and 21 day time points but the erythrocyte count reverted back to normal by 28(th) day indicating the emergence of refractoriness to paraquat. A marked surge in the blood reticulocyte count was observed in paraquat treated mice that also subsided by 28(th) day. Young erythrocytes in circulation were randomly eliminated from blood circulation in paraquat treated mice and a significant elevation in the level of reactive oxygen species (ROS) was also observed maximally the erythrocytes of this age group. Cells representing various stages of erythroid differentiation in bone marrow and spleen were identified and enumerated flow cytometrically based on their expression of Ter119 and transferrin (CD71) receptor. Proliferative activity of erythroid cells, their relative proportion as well as their absolute numbers fell significantly in bone marrow of paraquat treated mice but all these parameters were significantly elevated in spleens of paraquat treated mice. These changes were essentially restricted to the cells belonging to the two earliest stages of erythroid differentiation. Taken together our results indicate that paraquat treatment causes a transient anemia in mice resulting from random elimination of young circulating erythrocytes as well as depressed erythropoietic activity in bone marrow. Spleen erythropoietic activity however was elevated in paraquat treated mice.