Cargando…

Vaccine Safety and Efficacy Evaluation of a Recombinant Bovine Respiratory Syncytial Virus (BRSV) with Deletion of the SH Gene and Subunit Vaccines Based On Recombinant Human RSV Proteins: N-nanorings, P and M2-1, in Calves with Maternal Antibodies

The development of safe and effective vaccines against both bovine and human respiratory syncytial viruses (BRSV, HRSV) to be used in the presence of RSV-specific maternally-derived antibodies (MDA) remains a high priority in human and veterinary medicine. Herein, we present safety and efficacy resu...

Descripción completa

Detalles Bibliográficos
Autores principales: Blodörn, Krister, Hägglund, Sara, Fix, Jenna, Dubuquoy, Catherine, Makabi-Panzu, Boby, Thom, Michelle, Karlsson, Per, Roque, Jean-Louis, Karlstam, Erika, Pringle, John, Eléouët, Jean-François, Riffault, Sabine, Taylor, Geraldine, Valarcher, Jean François
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063758/
https://www.ncbi.nlm.nih.gov/pubmed/24945377
http://dx.doi.org/10.1371/journal.pone.0100392
_version_ 1782321852809478144
author Blodörn, Krister
Hägglund, Sara
Fix, Jenna
Dubuquoy, Catherine
Makabi-Panzu, Boby
Thom, Michelle
Karlsson, Per
Roque, Jean-Louis
Karlstam, Erika
Pringle, John
Eléouët, Jean-François
Riffault, Sabine
Taylor, Geraldine
Valarcher, Jean François
author_facet Blodörn, Krister
Hägglund, Sara
Fix, Jenna
Dubuquoy, Catherine
Makabi-Panzu, Boby
Thom, Michelle
Karlsson, Per
Roque, Jean-Louis
Karlstam, Erika
Pringle, John
Eléouët, Jean-François
Riffault, Sabine
Taylor, Geraldine
Valarcher, Jean François
author_sort Blodörn, Krister
collection PubMed
description The development of safe and effective vaccines against both bovine and human respiratory syncytial viruses (BRSV, HRSV) to be used in the presence of RSV-specific maternally-derived antibodies (MDA) remains a high priority in human and veterinary medicine. Herein, we present safety and efficacy results from a virulent BRSV challenge of calves with MDA, which were immunized with one of three vaccine candidates that allow serological differentiation of infected from vaccinated animals (DIVA): an SH gene-deleted recombinant BRSV (ΔSHrBRSV), and two subunit (SU) formulations based on HRSV-P, -M2-1, and -N recombinant proteins displaying BRSV-F and -G epitopes, adjuvanted by either oil emulsion (Montanide ISA71(VG), SUMont) or immunostimulating complex matrices (AbISCO-300, SUAbis). Whereas all control animals developed severe respiratory disease and shed high levels of virus following BRSV challenge, ΔSHrBRSV-immunized calves demonstrated almost complete clinical and virological protection five weeks after a single intranasal vaccination. Although mucosal vaccination with ΔSHrBRSV failed to induce a detectable immunological response, there was a rapid and strong anamnestic mucosal BRSV-specific IgA, virus neutralizing antibody and local T cell response following challenge with virulent BRSV. Calves immunized twice intramuscularly, three weeks apart with SUMont were also well protected two weeks after boost. The protection was not as pronounced as that in ΔSHrBRSV-immunized animals, but superior to those immunized twice subcutaneously three weeks apart with SUAbis. Antibody responses induced by the subunit vaccines were non-neutralizing and not directed against BRSV F or G proteins. When formulated as SUMont but not as SUAbis, the HRSV N, P and M2-1 proteins induced strong systemic cross-protective cell-mediated immune responses detectable already after priming. ΔSHrBRSV and SUMont are two promising DIVA-compatible vaccines, apparently inducing protection by different immune responses that were influenced by vaccine-composition, immunization route and regimen.
format Online
Article
Text
id pubmed-4063758
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-40637582014-06-25 Vaccine Safety and Efficacy Evaluation of a Recombinant Bovine Respiratory Syncytial Virus (BRSV) with Deletion of the SH Gene and Subunit Vaccines Based On Recombinant Human RSV Proteins: N-nanorings, P and M2-1, in Calves with Maternal Antibodies Blodörn, Krister Hägglund, Sara Fix, Jenna Dubuquoy, Catherine Makabi-Panzu, Boby Thom, Michelle Karlsson, Per Roque, Jean-Louis Karlstam, Erika Pringle, John Eléouët, Jean-François Riffault, Sabine Taylor, Geraldine Valarcher, Jean François PLoS One Research Article The development of safe and effective vaccines against both bovine and human respiratory syncytial viruses (BRSV, HRSV) to be used in the presence of RSV-specific maternally-derived antibodies (MDA) remains a high priority in human and veterinary medicine. Herein, we present safety and efficacy results from a virulent BRSV challenge of calves with MDA, which were immunized with one of three vaccine candidates that allow serological differentiation of infected from vaccinated animals (DIVA): an SH gene-deleted recombinant BRSV (ΔSHrBRSV), and two subunit (SU) formulations based on HRSV-P, -M2-1, and -N recombinant proteins displaying BRSV-F and -G epitopes, adjuvanted by either oil emulsion (Montanide ISA71(VG), SUMont) or immunostimulating complex matrices (AbISCO-300, SUAbis). Whereas all control animals developed severe respiratory disease and shed high levels of virus following BRSV challenge, ΔSHrBRSV-immunized calves demonstrated almost complete clinical and virological protection five weeks after a single intranasal vaccination. Although mucosal vaccination with ΔSHrBRSV failed to induce a detectable immunological response, there was a rapid and strong anamnestic mucosal BRSV-specific IgA, virus neutralizing antibody and local T cell response following challenge with virulent BRSV. Calves immunized twice intramuscularly, three weeks apart with SUMont were also well protected two weeks after boost. The protection was not as pronounced as that in ΔSHrBRSV-immunized animals, but superior to those immunized twice subcutaneously three weeks apart with SUAbis. Antibody responses induced by the subunit vaccines were non-neutralizing and not directed against BRSV F or G proteins. When formulated as SUMont but not as SUAbis, the HRSV N, P and M2-1 proteins induced strong systemic cross-protective cell-mediated immune responses detectable already after priming. ΔSHrBRSV and SUMont are two promising DIVA-compatible vaccines, apparently inducing protection by different immune responses that were influenced by vaccine-composition, immunization route and regimen. Public Library of Science 2014-06-19 /pmc/articles/PMC4063758/ /pubmed/24945377 http://dx.doi.org/10.1371/journal.pone.0100392 Text en © 2014 Blodörn et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Blodörn, Krister
Hägglund, Sara
Fix, Jenna
Dubuquoy, Catherine
Makabi-Panzu, Boby
Thom, Michelle
Karlsson, Per
Roque, Jean-Louis
Karlstam, Erika
Pringle, John
Eléouët, Jean-François
Riffault, Sabine
Taylor, Geraldine
Valarcher, Jean François
Vaccine Safety and Efficacy Evaluation of a Recombinant Bovine Respiratory Syncytial Virus (BRSV) with Deletion of the SH Gene and Subunit Vaccines Based On Recombinant Human RSV Proteins: N-nanorings, P and M2-1, in Calves with Maternal Antibodies
title Vaccine Safety and Efficacy Evaluation of a Recombinant Bovine Respiratory Syncytial Virus (BRSV) with Deletion of the SH Gene and Subunit Vaccines Based On Recombinant Human RSV Proteins: N-nanorings, P and M2-1, in Calves with Maternal Antibodies
title_full Vaccine Safety and Efficacy Evaluation of a Recombinant Bovine Respiratory Syncytial Virus (BRSV) with Deletion of the SH Gene and Subunit Vaccines Based On Recombinant Human RSV Proteins: N-nanorings, P and M2-1, in Calves with Maternal Antibodies
title_fullStr Vaccine Safety and Efficacy Evaluation of a Recombinant Bovine Respiratory Syncytial Virus (BRSV) with Deletion of the SH Gene and Subunit Vaccines Based On Recombinant Human RSV Proteins: N-nanorings, P and M2-1, in Calves with Maternal Antibodies
title_full_unstemmed Vaccine Safety and Efficacy Evaluation of a Recombinant Bovine Respiratory Syncytial Virus (BRSV) with Deletion of the SH Gene and Subunit Vaccines Based On Recombinant Human RSV Proteins: N-nanorings, P and M2-1, in Calves with Maternal Antibodies
title_short Vaccine Safety and Efficacy Evaluation of a Recombinant Bovine Respiratory Syncytial Virus (BRSV) with Deletion of the SH Gene and Subunit Vaccines Based On Recombinant Human RSV Proteins: N-nanorings, P and M2-1, in Calves with Maternal Antibodies
title_sort vaccine safety and efficacy evaluation of a recombinant bovine respiratory syncytial virus (brsv) with deletion of the sh gene and subunit vaccines based on recombinant human rsv proteins: n-nanorings, p and m2-1, in calves with maternal antibodies
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063758/
https://www.ncbi.nlm.nih.gov/pubmed/24945377
http://dx.doi.org/10.1371/journal.pone.0100392
work_keys_str_mv AT blodornkrister vaccinesafetyandefficacyevaluationofarecombinantbovinerespiratorysyncytialvirusbrsvwithdeletionoftheshgeneandsubunitvaccinesbasedonrecombinanthumanrsvproteinsnnanoringspandm21incalveswithmaternalantibodies
AT hagglundsara vaccinesafetyandefficacyevaluationofarecombinantbovinerespiratorysyncytialvirusbrsvwithdeletionoftheshgeneandsubunitvaccinesbasedonrecombinanthumanrsvproteinsnnanoringspandm21incalveswithmaternalantibodies
AT fixjenna vaccinesafetyandefficacyevaluationofarecombinantbovinerespiratorysyncytialvirusbrsvwithdeletionoftheshgeneandsubunitvaccinesbasedonrecombinanthumanrsvproteinsnnanoringspandm21incalveswithmaternalantibodies
AT dubuquoycatherine vaccinesafetyandefficacyevaluationofarecombinantbovinerespiratorysyncytialvirusbrsvwithdeletionoftheshgeneandsubunitvaccinesbasedonrecombinanthumanrsvproteinsnnanoringspandm21incalveswithmaternalantibodies
AT makabipanzuboby vaccinesafetyandefficacyevaluationofarecombinantbovinerespiratorysyncytialvirusbrsvwithdeletionoftheshgeneandsubunitvaccinesbasedonrecombinanthumanrsvproteinsnnanoringspandm21incalveswithmaternalantibodies
AT thommichelle vaccinesafetyandefficacyevaluationofarecombinantbovinerespiratorysyncytialvirusbrsvwithdeletionoftheshgeneandsubunitvaccinesbasedonrecombinanthumanrsvproteinsnnanoringspandm21incalveswithmaternalantibodies
AT karlssonper vaccinesafetyandefficacyevaluationofarecombinantbovinerespiratorysyncytialvirusbrsvwithdeletionoftheshgeneandsubunitvaccinesbasedonrecombinanthumanrsvproteinsnnanoringspandm21incalveswithmaternalantibodies
AT roquejeanlouis vaccinesafetyandefficacyevaluationofarecombinantbovinerespiratorysyncytialvirusbrsvwithdeletionoftheshgeneandsubunitvaccinesbasedonrecombinanthumanrsvproteinsnnanoringspandm21incalveswithmaternalantibodies
AT karlstamerika vaccinesafetyandefficacyevaluationofarecombinantbovinerespiratorysyncytialvirusbrsvwithdeletionoftheshgeneandsubunitvaccinesbasedonrecombinanthumanrsvproteinsnnanoringspandm21incalveswithmaternalantibodies
AT pringlejohn vaccinesafetyandefficacyevaluationofarecombinantbovinerespiratorysyncytialvirusbrsvwithdeletionoftheshgeneandsubunitvaccinesbasedonrecombinanthumanrsvproteinsnnanoringspandm21incalveswithmaternalantibodies
AT eleouetjeanfrancois vaccinesafetyandefficacyevaluationofarecombinantbovinerespiratorysyncytialvirusbrsvwithdeletionoftheshgeneandsubunitvaccinesbasedonrecombinanthumanrsvproteinsnnanoringspandm21incalveswithmaternalantibodies
AT riffaultsabine vaccinesafetyandefficacyevaluationofarecombinantbovinerespiratorysyncytialvirusbrsvwithdeletionoftheshgeneandsubunitvaccinesbasedonrecombinanthumanrsvproteinsnnanoringspandm21incalveswithmaternalantibodies
AT taylorgeraldine vaccinesafetyandefficacyevaluationofarecombinantbovinerespiratorysyncytialvirusbrsvwithdeletionoftheshgeneandsubunitvaccinesbasedonrecombinanthumanrsvproteinsnnanoringspandm21incalveswithmaternalantibodies
AT valarcherjeanfrancois vaccinesafetyandefficacyevaluationofarecombinantbovinerespiratorysyncytialvirusbrsvwithdeletionoftheshgeneandsubunitvaccinesbasedonrecombinanthumanrsvproteinsnnanoringspandm21incalveswithmaternalantibodies