Cargando…

Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan

BACKGROUND: There is a need to standardise non-invasive measurements of liver iron concentrations (LIC) so clear inferences can be drawn about body iron levels that are associated with hepatic and extra-hepatic complications of iron overload. Since the first demonstration of an inverse relationship...

Descripción completa

Detalles Bibliográficos
Autores principales: Garbowski, Maciej W, Carpenter, John-Paul, Smith, Gillian, Roughton, Michael, Alam, Mohammed H, He, Taigang, Pennell, Dudley J, Porter, John B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064805/
https://www.ncbi.nlm.nih.gov/pubmed/24915987
http://dx.doi.org/10.1186/1532-429X-16-40
_version_ 1782321993590243328
author Garbowski, Maciej W
Carpenter, John-Paul
Smith, Gillian
Roughton, Michael
Alam, Mohammed H
He, Taigang
Pennell, Dudley J
Porter, John B
author_facet Garbowski, Maciej W
Carpenter, John-Paul
Smith, Gillian
Roughton, Michael
Alam, Mohammed H
He, Taigang
Pennell, Dudley J
Porter, John B
author_sort Garbowski, Maciej W
collection PubMed
description BACKGROUND: There is a need to standardise non-invasive measurements of liver iron concentrations (LIC) so clear inferences can be drawn about body iron levels that are associated with hepatic and extra-hepatic complications of iron overload. Since the first demonstration of an inverse relationship between biopsy LIC and liver magnetic resonance (MR) using a proof-of-concept T2* sequence, MR technology has advanced dramatically with a shorter minimum echo-time, closer inter-echo spacing and constant repetition time. These important advances allow more accurate calculation of liver T2* especially in patients with high LIC. METHODS: Here, we used an optimised liver T2* sequence calibrated against 50 liver biopsy samples on 25 patients with transfusional haemosiderosis using ordinary least squares linear regression, and assessed the method reproducibility in 96 scans over an LIC range up to 42 mg/g dry weight (dw) using Bland-Altman plots. Using mixed model linear regression we compared the new T2*-LIC with R2-LIC (Ferriscan) on 92 scans in 54 patients with transfusional haemosiderosis and examined method agreement using Bland-Altman approach. RESULTS: Strong linear correlation between ln(T2*) and ln(LIC) led to the calibration equation LIC = 31.94(T2*)(-1.014). This yielded LIC values approximately 2.2 times higher than the proof-of-concept T2* method. Comparing this new T2*-LIC with the R2-LIC (Ferriscan) technique in 92 scans, we observed a close relationship between the two methods for values up to 10 mg/g dw, however the method agreement was poor. CONCLUSIONS: New calibration of T2* against liver biopsy estimates LIC in a reproducible way, correcting the proof-of-concept calibration by 2.2 times. Due to poor agreement, both methods should be used separately to diagnose or rule out liver iron overload in patients with increased ferritin.
format Online
Article
Text
id pubmed-4064805
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-40648052014-06-21 Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan Garbowski, Maciej W Carpenter, John-Paul Smith, Gillian Roughton, Michael Alam, Mohammed H He, Taigang Pennell, Dudley J Porter, John B J Cardiovasc Magn Reson Research BACKGROUND: There is a need to standardise non-invasive measurements of liver iron concentrations (LIC) so clear inferences can be drawn about body iron levels that are associated with hepatic and extra-hepatic complications of iron overload. Since the first demonstration of an inverse relationship between biopsy LIC and liver magnetic resonance (MR) using a proof-of-concept T2* sequence, MR technology has advanced dramatically with a shorter minimum echo-time, closer inter-echo spacing and constant repetition time. These important advances allow more accurate calculation of liver T2* especially in patients with high LIC. METHODS: Here, we used an optimised liver T2* sequence calibrated against 50 liver biopsy samples on 25 patients with transfusional haemosiderosis using ordinary least squares linear regression, and assessed the method reproducibility in 96 scans over an LIC range up to 42 mg/g dry weight (dw) using Bland-Altman plots. Using mixed model linear regression we compared the new T2*-LIC with R2-LIC (Ferriscan) on 92 scans in 54 patients with transfusional haemosiderosis and examined method agreement using Bland-Altman approach. RESULTS: Strong linear correlation between ln(T2*) and ln(LIC) led to the calibration equation LIC = 31.94(T2*)(-1.014). This yielded LIC values approximately 2.2 times higher than the proof-of-concept T2* method. Comparing this new T2*-LIC with the R2-LIC (Ferriscan) technique in 92 scans, we observed a close relationship between the two methods for values up to 10 mg/g dw, however the method agreement was poor. CONCLUSIONS: New calibration of T2* against liver biopsy estimates LIC in a reproducible way, correcting the proof-of-concept calibration by 2.2 times. Due to poor agreement, both methods should be used separately to diagnose or rule out liver iron overload in patients with increased ferritin. BioMed Central 2014-06-10 /pmc/articles/PMC4064805/ /pubmed/24915987 http://dx.doi.org/10.1186/1532-429X-16-40 Text en Copyright © 2014 Garbowski et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Garbowski, Maciej W
Carpenter, John-Paul
Smith, Gillian
Roughton, Michael
Alam, Mohammed H
He, Taigang
Pennell, Dudley J
Porter, John B
Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan
title Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan
title_full Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan
title_fullStr Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan
title_full_unstemmed Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan
title_short Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan
title_sort biopsy-based calibration of t2* magnetic resonance for estimation of liver iron concentration and comparison with r2 ferriscan
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064805/
https://www.ncbi.nlm.nih.gov/pubmed/24915987
http://dx.doi.org/10.1186/1532-429X-16-40
work_keys_str_mv AT garbowskimaciejw biopsybasedcalibrationoft2magneticresonanceforestimationofliverironconcentrationandcomparisonwithr2ferriscan
AT carpenterjohnpaul biopsybasedcalibrationoft2magneticresonanceforestimationofliverironconcentrationandcomparisonwithr2ferriscan
AT smithgillian biopsybasedcalibrationoft2magneticresonanceforestimationofliverironconcentrationandcomparisonwithr2ferriscan
AT roughtonmichael biopsybasedcalibrationoft2magneticresonanceforestimationofliverironconcentrationandcomparisonwithr2ferriscan
AT alammohammedh biopsybasedcalibrationoft2magneticresonanceforestimationofliverironconcentrationandcomparisonwithr2ferriscan
AT hetaigang biopsybasedcalibrationoft2magneticresonanceforestimationofliverironconcentrationandcomparisonwithr2ferriscan
AT pennelldudleyj biopsybasedcalibrationoft2magneticresonanceforestimationofliverironconcentrationandcomparisonwithr2ferriscan
AT porterjohnb biopsybasedcalibrationoft2magneticresonanceforestimationofliverironconcentrationandcomparisonwithr2ferriscan