Cargando…

Classification of Four-Class Motor Imagery Employing Single-Channel Electroencephalography

With advances in brain-computer interface (BCI) research, a portable few- or single-channel BCI system has become necessary. Most recent BCI studies have demonstrated that the common spatial pattern (CSP) algorithm is a powerful tool in extracting features for multiple-class motor imagery. However,...

Descripción completa

Detalles Bibliográficos
Autores principales: Ge, Sheng, Wang, Ruimin, Yu, Dongchuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064966/
https://www.ncbi.nlm.nih.gov/pubmed/24950192
http://dx.doi.org/10.1371/journal.pone.0098019
Descripción
Sumario:With advances in brain-computer interface (BCI) research, a portable few- or single-channel BCI system has become necessary. Most recent BCI studies have demonstrated that the common spatial pattern (CSP) algorithm is a powerful tool in extracting features for multiple-class motor imagery. However, since the CSP algorithm requires multi-channel information, it is not suitable for a few- or single-channel system. In this study, we applied a short-time Fourier transform to decompose a single-channel electroencephalography signal into the time-frequency domain and construct multi-channel information. Using the reconstructed data, the CSP was combined with a support vector machine to obtain high classification accuracies from channels of both the sensorimotor and forehead areas. These results suggest that motor imagery can be detected with a single channel not only from the traditional sensorimotor area but also from the forehead area.