Cargando…
Classification of Four-Class Motor Imagery Employing Single-Channel Electroencephalography
With advances in brain-computer interface (BCI) research, a portable few- or single-channel BCI system has become necessary. Most recent BCI studies have demonstrated that the common spatial pattern (CSP) algorithm is a powerful tool in extracting features for multiple-class motor imagery. However,...
Autores principales: | Ge, Sheng, Wang, Ruimin, Yu, Dongchuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064966/ https://www.ncbi.nlm.nih.gov/pubmed/24950192 http://dx.doi.org/10.1371/journal.pone.0098019 |
Ejemplares similares
-
Electroencephalography-Based Brain–Computer Interface Motor Imagery Classification
por: Mohammadi, Ehsan, et al.
Publicado: (2021) -
Classification of Motor Imagery Electroencephalography Signals Based on Image Processing Method
por: Chen, Zhongye, et al.
Publicado: (2021) -
Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods
por: Majidov, Ikhtiyor, et al.
Publicado: (2019) -
Electroencephalography Signal Analysis for Human Activities Classification: A Solution Based on Machine Learning and Motor Imagery
por: de Brito Guerra, Tarciana C., et al.
Publicado: (2023) -
Fast and Efficient Four‑class Motor Imagery Electroencephalography Signal Analysis Using Common Spatial Pattern–Ridge Regression Algorithm for the Purpose of Brain–Computer Interface
por: Seifzadeh, Sahar, et al.
Publicado: (2017)