Cargando…

Mukaiyama Aldol Reactions in Aqueous Media

Mukaiyama aldol reactions in aqueous media have been surveyed. While the original Mukaiyama aldol reactions entailed stoichiometric use of Lewis acids in organic solvents under strictly anhydrous conditions, Mukaiyama aldol reactions in aqueous media are not only suitable for green sustainable chemi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kitanosono, Taku, Kobayashi, Shū
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY-VCH Verlag 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4065357/
https://www.ncbi.nlm.nih.gov/pubmed/24971045
http://dx.doi.org/10.1002/adsc.201300798
Descripción
Sumario:Mukaiyama aldol reactions in aqueous media have been surveyed. While the original Mukaiyama aldol reactions entailed stoichiometric use of Lewis acids in organic solvents under strictly anhydrous conditions, Mukaiyama aldol reactions in aqueous media are not only suitable for green sustainable chemistry but are found to produce singular phenomena. These findings led to the discovery of a series of water-compatible Lewis acids such as lanthanide triflates in 1991. Our understanding on these beneficial effects in the presence of water will be deepened through the brilliant examples collected in this review. 1 Introduction 2 Rate Enhancement by Water in the Mukaiyama Aldol Reaction 3 Lewis Acid Catalysis in Aqueous or Organic Solvents 3.1 Water-Compatible Lewis Acids 4 Lewis-Base Catalysis in Aqueous or Organic Solvents 5 The Mukaiyama Aldol Reactions in 100% Water 6 Asymmetric Catalysts in Aqueous Media and Water 7 Conclusions and Perspective