Cargando…
Detecting contaminated birthdates using generalized additive models
BACKGROUND: Erroneous patient birthdates are common in health databases. Detection of these errors usually involves manual verification, which can be resource intensive and impractical. By identifying a frequent manifestation of birthdate errors, this paper presents a principled and statistically dr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4065390/ https://www.ncbi.nlm.nih.gov/pubmed/24923281 http://dx.doi.org/10.1186/1471-2105-15-185 |