Cargando…

Efficient design of meganucleases using a machine learning approach

BACKGROUND: Meganucleases are important tools for genome engineering, providing an efficient way to generate DNA double-strand breaks at specific loci of interest. Numerous experimental efforts, ranging from in vivo selection to in silico modeling, have been made to re-engineer meganucleases to targ...

Descripción completa

Detalles Bibliográficos
Autores principales: Zaslavskiy, Mikhail, Bertonati, Claudia, Duchateau, Philippe, Duclert, Aymeric, Silva, George H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4065607/
https://www.ncbi.nlm.nih.gov/pubmed/24934562
http://dx.doi.org/10.1186/1471-2105-15-191
Descripción
Sumario:BACKGROUND: Meganucleases are important tools for genome engineering, providing an efficient way to generate DNA double-strand breaks at specific loci of interest. Numerous experimental efforts, ranging from in vivo selection to in silico modeling, have been made to re-engineer meganucleases to target relevant DNA sequences. RESULTS: Here we present a novel in silico method for designing custom meganucleases that is based on the use of a machine learning approach. We compared it with existing in silico physical models and high-throughput experimental screening. The machine learning model was used to successfully predict active meganucleases for 53 new DNA targets. CONCLUSIONS: This new method shows competitive performance compared with state-of-the-art in silico physical models, with up to a fourfold increase in terms of the design success rate. Compared to experimental high-throughput screening methods, it reduces the number of screening experiments needed by a factor of more than 100 without affecting final performance.