Cargando…
Identification of non-coding RNAs with a new composite feature in the Hybrid Random Forest Ensemble algorithm
To identify non-coding RNA (ncRNA) signals within genomic regions, a classification tool was developed based on a hybrid random forest (RF) with a logistic regression model to efficiently discriminate short ncRNA sequences as well as long complex ncRNA sequences. This RF-based classifier was trained...
Autores principales: | Lertampaiporn, Supatcha, Thammarongtham, Chinae, Nukoolkit, Chakarida, Kaewkamnerdpong, Boonserm, Ruengjitchatchawalya, Marasri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066759/ https://www.ncbi.nlm.nih.gov/pubmed/24771344 http://dx.doi.org/10.1093/nar/gku325 |
Ejemplares similares
-
Heterogeneous ensemble approach with discriminative features and
modified-SMOTEbagging for pre-miRNA classification
por: Lertampaiporn, Supatcha, et al.
Publicado: (2013) -
Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs
por: Lertampaiporn, Supatcha, et al.
Publicado: (2021) -
Ensemble-AHTPpred: A Robust Ensemble Machine Learning Model Integrated With a New Composite Feature for Identifying Antihypertensive Peptides
por: Lertampaiporn, Supatcha, et al.
Publicado: (2022) -
Ensemble of Multiple Classifiers for Multilabel Classification of Plant Protein Subcellular Localization
por: Wattanapornprom, Warin, et al.
Publicado: (2021) -
mSRFR: a machine learning model using microalgal signature features for ncRNA classification
por: Anuntakarun, Songtham, et al.
Publicado: (2022)